32 research outputs found

    Robust SARS-CoV-2-specific and heterologous immune responses in vaccine-naïve residents of long-term care facilities who survive natural infection

    Get PDF
    We studied humoral and cellular immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 152 long-term care facility staff and 124 residents over a prospective 4-month period shortly after the first wave of infection in England. We show that residents of long-term care facilities developed high and stable levels of antibodies against spike protein and receptor-binding domain. Nucleocapsid-specific responses were also elevated but waned over time. Antibodies showed stable and equivalent levels of functional inhibition against spike-angiotensin-converting enzyme 2 binding in all age groups with comparable activity against viral variants of concern. SARS-CoV-2 seropositive donors showed high levels of antibodies to other beta-coronaviruses but serostatus did not impact humoral immunity to influenza or other respiratory syncytial viruses. SARS-CoV-2-specific cellular responses were similar across all ages but virus-specific populations showed elevated levels of activation in older donors. Thus, survivors of SARS-CoV-2 infection show a robust and stable immunity against the virus that does not negatively impact responses to other seasonal viruses

    Distinct Regions of the Large Extracellular Domain of Tetraspanin CD9 Are Involved in the Control of Human Multinucleated Giant Cell Formation

    Get PDF
    Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining ‘CCG’ motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role

    Internal validation of STRmix™ – A multi laboratory response to PCAST

    Get PDF
    We report a large compilation of the internal validations of the probabilistic genotyping software STRmix™. Thirty one laboratories contributed data resulting in 2825 mixtures comprising three to six donors and a wide range of multiplex, equipment, mixture proportions and templates. Previously reported trends in the LR were confirmed including less discriminatory LRs occurring both for donors and non-donors at low template (for the donor in question) and at high contributor number. We were unable to isolate an effect of allelic sharing. Any apparent effect appears to be largely confounded with increased contributor number

    Impacts of adaptation and responsibility framings on attitudes towards climate change mitigation

    Get PDF
    It is likely that climate change communications and media coverage will increasingly stress the importance of adaptation, yet little is known about whether or how this may affect attitudes towards mitigation. Despite concerns that communicating adaptation could undermine public support for mitigation, previous research has found it can have the opposite effect by increasing risk salience. It is also unclear whether people respond differently to information about mitigation and adaptation depending on whether action is framed as an individual or government responsibility. Using an experimental design, this study sought to examine how public attitudes towards mitigation are influenced by varying climate change messages, and how this might interact with prior attitudes to climate change. UK-based participants (N = 800) read one of four texts in a 2 × 2 design comparing adaptation versus mitigation information and personal versus governmental action. No main effect was found for adaptation versus mitigation framing, nor for individual action versus government policy, but we did observe a series of interaction effects with prior attitudes to climate change. Mitigation and adaptation information affected participants’ responses differently depending on their pre-existing levels of concern about climate change, suggesting that mitigation framings may be more engaging for those with high levels of concern, whereas adaptation framings may be more engaging for low-concern individuals. Government mitigation action appears to engender particularly polarised attitudes according to prior concern. Implications for climate change communications are considered

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    PATCH: posture and mobility training for care staff versus usual care in care homes: study protocol for a randomised controlled trial

    Get PDF
    Background: Residents of care homes have high levels of disability and poor mobility, but the promotion of health and wellbeing within care homes is poorly realised. Residents spend the majority of their time sedentary which leads to increased dependency and, coupled with poor postural management, can have many adverse outcomes including pressure sores, pain and reduced social interaction. The intervention being tested in this project (the Skilful Care Training Package) aims to increase the awareness and skills of care staff in relation to poor posture in the older, less mobile adult and highlight the benefits of activity, and how to skilfully assist activity, in this group to enable mobility and reduce falls risk. Feasibility work will be undertaken to inform the design of a definitive cluster randomised controlled trial. Methods: This is a cluster randomised controlled feasibility trial, aiming to recruit at least 12–15 residents at each of 10 care homes across Yorkshire. Care homes will be randomly allocated on a 1:1 basis to receive either the Skilful Care Training Package alongside usual care or to continue to provide usual care alone. Assessments will be undertaken by blinded researchers with participating residents at baseline (before care home randomisation) and at three and six months post randomisation. Data relating to changes in physical activity, mobility, posture, mood and quality of life will be collected. Data at the level of the home will also be collected and will include staff experience of care and changes in the numbers and types of adverse events residents experience (for example, hospital admissions, falls). Details of NHS service usage will be collected to inform the economic analysis. An embedded process evaluation will explore intervention delivery and its acceptability to staff and residents. Discussion: Participant uptake, engagement and retention are key feasibility outcomes. Exploration of barriers and facilitators to intervention delivery will inform intervention optimisation. Study results will inform progression to a definitive trial and add to the body of evidence for good practice in care home research. Trial registration: ISRCTN Registry, ISRCTN50080330. Registered on 27 March 2017

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore