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Sarah Noël, Simon Malsom, Steven Myers, Susan Welti,
Tamyra Moretti, Teresa McMahon, Thomas Grill, Tim
Kalafut, MaryMargaret Greer-Ritzheimer, Vickie Beamer,
Duncan A. Taylor, John S. Buckleton

PII: S1872-4973(18)30010-3
DOI: https://doi.org/10.1016/j.fsigen.2018.01.003
Reference: FSIGEN 1834

To appear in: Forensic Science International: Genetics

Received date: 20-8-2017
Revised date: 29-11-2017
Accepted date: 6-1-2018

Please cite this article as: Jo-Anne Bright, Rebecca Richards, Maarten Kruijver,
Hannah Kelly, Catherine McGovern, Alan Magee, Andrew McWhorter, Anne
Ciecko, Brian Peck, Chase Baumgartner, Christina Buettner, Scott McWilliams,
Claire McKenna, Colin Gallacher, Ben Mallinder, Darren Wright, Deven Johnson,
Dorothy Catella, Eugene Lien, Craig O’Connor, George Duncan, Jason Bundy,
Jillian Echard, John Lowe, Joshua Stewart, Kathleen Corrado, Sheila Gentile, Marla
Kaplan, Michelle Hassler, Naomi McDonald, Paul Hulme, Rachel H.Oefelein, Shawn
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Highlights 

 The analysis of 2825 mixtures from 31 laboratories with the probabilistic genotyping 

software STRmix™ is reported. 

 Less discriminatory LRs occur both for donors and non-donors at low template (for 

the donor in question) and at high contributor number. 

 We were unable to isolate an effect of allelic overlap.  Any apparent effect appears to 

be largely confounded with increased contributor number. 

 

Introduction 

 

In 2016, the President's Council of Advisors on Science and Technology (PCAST) issued a 

report [1] and subsequently an addendum [2].  This report discussed a number of forensic 

disciplines.  Included amongst these was the interpretation of complex DNA mixtures.  

PCAST defined a complex mixture as any profile with three or more donors.  The report 

noted perceived limits to the proof of validity of the use of probabilistic genotyping (PG) in 

some situations as of September 2016.  In particular they highlighted gaps regarding high 

ratio and high contributor number mixtures.  PCAST considered validity proven for mixtures 

containing “three contributors where the person of interest comprises at least 20% of the 

sample.” [2].  They noted that the “few studies that have explored 4- or 5-person mixtures 
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often involve mixtures that are derived from only a few sets of people (in some cases, only 

one).” [2]. They call for the expansion of empirical studies, testing the validity and reliability 

of PG methods across a broader relevant range of profile types.   

PCAST limited themselves for proof of validity to empirical studies published in the peer 

reviewed literature.  There are a number of published reports describing the validation of 

various probabilistic genotyping software by the developers.  These include the New York 

City Office of Chief Medical Examiner’s FST Tool [3], TrueAllele® [4], and STRmix™ [5].  

More recently the validation of GenoProof Mixture 3 [6] and Kongoh [7] has been reported. 

PCAST also perceived there was a gap in “the need for clarity about the scientific standards 

for the validity and reliability of forensic methods.” [1].  The Scientific Working Group on 

DNA Analysis Methods (SWGDAM) [8] and International Society for Forensic Genetics 

(ISFG) [9] have both published comprehensive guidelines that inform how to test a 

probabilistic genotyping system to ensure reliability and validity of results. 

At the time of the PCAST report there was a considerable number of empirical studies 

already undertaken by various laboratories who had implemented, or were in the process of 

implementing, STRmix™.  These followed the SWGDAM guidelines [10, 11].  They were 

not published in the peer reviewed literature largely because it is the policy of many journals 

not to publish such material.  Some of these studies are already in the public domain on 

websites (see for example [12, 13]).   

Since the appearance of the PCAST report, the Federal Bureau of Investigation Laboratory, 

Quantico, has published its STRmix™ internal validation in the peer reviewed literature [14], 

also in accordance with the SWGDAM guidelines.  This publication reports 277 mixtures 

with two to five donors and a range of mixture ratios and templates.   

In this work we report a further study of 2825 mixtures compiled from 31 laboratories 

(including multi laboratory systems) who are using STRmix™ in casework (28/31) or 

currently validating STRmix™ for future use in casework (3/31).  Mixtures of three, four, 

five, and six contributors were specifically targeted in order to address the criticisms of 

PCAST.  

We aim to specifically address the deficiencies described by PCAST in their report by 

addressing the following points: 

(1) How well does the method perform as a function of the number of contributors to the 

mixture? How well does it perform when the number of contributors to the mixture is 

unknown?  

(2) How does the method perform as a function of the number of alleles shared among 

individuals in the mixture? Relatedly, how does it perform when the mixtures include 

related individuals?  

(3) How well does the method perform - and how does accuracy degrade - as a function 

of the absolute and relative amounts of DNA from the various contributors? 

We address point 1 in experiment 1 by analysing all submitted mixtures assuming the 

apparent number of contributors.  The apparent number of contributors (N) was determined 

blind by the submitting laboratory following their own standard operating procedures. Note 

that this resulted in all six person mixtures being analysed as assuming less than six. 

Additionally, we have assumed N+1 for a subset of the data within experiment 2.  Point 2 we 
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address by interrogating the data in experiment 1 with respect to the amount of allelic 

sharing. Point 3 we address by conducting Hp and Hd true tests on mixtures in experiment 1. 

In this work the developers of STRmix™ did not generate or choose the data that was 

analysed by individual (non-developing) laboratories and they have not censored any data 

from the results. This adheres to the call by PCAST for work to be carried out in conjunction 

between developers and non-developing organisations. 

There is a fourth point to the list in the PCAST report: 

(4) Under what circumstances - and why - does the method produce results (random 

inclusion probabilities) that differ substantially from those produced by other methods?  

 

We do not address point (4) within this paper, however work is ongoing to address it across a 

number of continuous and semi-continuous platforms.  

2.0 Methods 

2.1 Data submission 

Participating laboratories submitted ground truth known profiles originating from three to six 

contributors that had previously been interpreted as part of their STRmix™ internal 

validation studies.  Profiles were submitted as analysed data in the form of text or Excel files.  

In addition, laboratories provided reference profiles for the known contributors, their 

validated laboratory specific settings, and the apparent number of contributors to each profile.  

The apparent number of contributors was determined by the submitting laboratories 

following their own standard operating procedures.  The apparent number of contributors was 

used as the true number of contributors to a crime profile is never known.   

2.1.2 Data description 

Apparent three, four and five person mixtures were interpreted by staff at ESR (New 

Zealand) using STRmix™ V2.5.02.  No apparent single source or two person mixtures were 

interpreted as PCAST, perhaps erroneously, decreed foundational validity to be already 

established for these [1].  In total there were 2825 mixtures interpreted from 31 different 

laboratories generated using eight different STR multiplexes and analysed on two different 

types of capillary electrophoresis (CE) instruments. 

The STRmix™ settings used for the interpretation were those determined by the contributing 

laboratory.  These included per allele stutter ratios (back and forward, where determined), 

allele and stutter peak height variance distributions, analytical thresholds, saturation, and 

drop-in parameters.  For each interpretation, eight MCMC chains of 100,000 burn-in accepts 

and 50,000 post burn-in accepts were used.   

The number of profiles submitted, multiplex, PCR cycle number, CE instrument used, and 

number of mixtures interpreted for each participating laboratory are provided in Table 1.  

Note some laboratories submitted profiles generated using more than one multiplex (kit) and 

some were multi laboratory systems, submitting profiles from different laboratories within 

the one system.  Many of the laboratories undertook dilution series to prepare mixtures for 

interpretation.  These were typically made by taking DNA from a few donors, often staff 

members, and mixing them in different combinations and ratios.  PCAST noted that “In 
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human molecular genetics, an experimental validation of an important diagnostic would 

typically involve hundreds of distinct samples.”  (PCAST pg 81).  Each different combination 

of genotypes is a unique contributor combination. 

The number of the unique contributor combinations for each mixture type is given in Table 1.  

For example, there were twelve combinations of different contributors for the apparent three 

person mixtures submitted by Lab 01.  In total there were 25 apparent three person mixtures 

from Lab 01, hence 12/25 in Table 1.  For all laboratories, there were 205 unique three 

contributor profiles, 132 unique four contributor profiles, and 14 unique five contributor 

profiles.  Within the STRmix™ deconvolution, template is modelled per contributor [11].  

The mode of the post burn-in proposals for template per contributor was used to calculate 

mixture proportion.  The mixture proportions as determined by STRmix™ (sorted by 

ascending proportion for contributor 1, constrained as the ‘major’ contributor) are plotted for 

each apparent N in Figure 1.  At least one contributor in 69.5% of the apparent three person 

mixtures, 96.5% of the apparent four person mixtures and all of the apparent five person 

mixtures contained less than 20% of the sample.   

PCAST calls for an investigation to be conducted into how a method “performs as a function 

of the number of alleles shared among individuals in the mixture”. In Figure 2 we provide the 

distribution of allele sharing for known contributors in the mixtures, broken down by the true 

number of contributors to a mixture. Allele sharing (AS) is defined as the fraction of alleles 

in the donors collectively that appear in two or more donor genotypes.  The upper tail (>0.80 

proportion AS) for the three and four contributor mixtures are a known family group 

consisting of a mother, father, and their two biological children that was investigated by one 

participating laboratory. 

2.2 Experiment 1 

For each profile, likelihood ratios (LRs) were calculated for the true donors and 10,000 false 

donors. The profiles of the 10,000 non-donors were created by simulation using the FBI 

Caucasian allele frequencies for each multiplex.  All LRs were calculated using the Caucasian 

allele frequencies from the FBI expanded CODIS core set [15] and a theta (FST) of 0.01.  The 

propositions considered were: 

Hp: the DNA originated from the person of interest (either true or false donor) and N-1 

unknown contributors 

Hd: the DNA originated from N unknown contributors 

where N was the apparent number of contributors. 

Average peak height (APH) was calculated for each contributor by averaging the peak 

heights of the unmasked alleles (not shared between contributors and not in back stutter 

positions of any other contributor alleles).  Alleles that had dropped out were assigned a 

height of half the laboratory’s analytical threshold (AT). 

2.3 Experiment 2 

For one laboratory the three and four contributor profiles were analysed at both the apparent 

number of contributors (N) and one greater (N+1).  For these mixtures, apparent N was the 

same as known N.  In practise, when analysed as N+1 a non-existent contributor with true 
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mixture proportion 0 has been added to reflect this ambiguous contributor being present at 

trace amounts.  The mixture proportion for this additional contributor was constrained to be 

low, but not necessarily zero, using the informed mixture proportion prior function in 

STRmix™ [16].  The LRs for the true donors and 10,000 non-donors were assigned as per 

Experiment 1.   

3.0 Results  

3.1 Data review 

The summary statistics for each interpretation were reviewed prior to review of the LR.  

These statistics included the Gelman-Rubin convergence statistic, average log10(likelihood) 

of the post burn-in MCMC, the average of the post burn-in allele variance parameter, and the 

average of the post burn-in stutter variance parameter.  These values can be used as 

diagnostics of the interpretation, to check for adequate MCMC convergence.  They are 

designed to help assess a STRmix™ deconvolution result.  No profiles required 

reinterpretation based on the review of the diagnostics.   

The LRs were also reviewed as part of data quality checks.  Large inclusionary LRs (LR>>1) 

for false contributors and exclusionary LRs (LR<1) for true contributors where the APH was 

relatively high were investigated.  For any given mixture, there is a chance that a given false 

contributor will have sufficient matching alleles, by chance, to give an LR>1.  Likelihood 

ratios for false contributors above 10,000 are provided in Table 2.  Following Taylor et al. 

[17]; 

1) The average LR for false contributors should be about 1. 

2) The probability of observing a likelihood ratio of x or larger from an unrelated non-

donor is no more than 1 in x.  

These two statements form the basis for assessing false contributor tests.  In an experiment on 

10,000 false contributors we would expect approximately one LR ≥ 10,000, plausibly 10 

above 1,000 and 100 above 100.  This work reports the comparison of approximately 20 

million false contributors.  The average LR for all false contributors is approximately 0.12.  

The reason that this average is below one is because the genotypes that would lead to the 

highest LRs (and so contribute significantly to the average) were not happened across in the 

number of Hd true tests performed. 

The fraction of allele sharing for the twenty highest false contributors ranged from 0.61 to up 

to 0.98 of the alleles with the mixture (Table 2).   

False exclusions were observed for known contributors where the apparent number of 

contributors was fewer than the ground truth number of contributors.  This was an expected 

result [18, 19].  By way of explanation we present an example of a true five contributor 

mixture interpreted assuming four contributors.  Figure 3 is a stylised electropherogram for 

one locus (SE33) with peaks and their corresponding height.  STRmix™ has modelled the 

minor peaks as stutters of the eight alleles all above 800 rfu.  Assuming four contributors and 

eight alleles, each contributor must be heterozygous at this locus.  One known contributor 

who is homozygous at this locus (genotype 18,18) is therefore excluded (LRSE33 = 0) as a 

contributor under the assumption of four contributors.  A second individual (genotype 

12,23.2) is a poor fit to the profile assuming four contributors given the large peak imbalance 

for these alleles resulting in a low weight and subsequent LR at this locus (LRSE33 = 0.01).   
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False exclusions were also observed due to human error if, for example, an incorrect 

reference profile was supplied.  Human errors were all corrected and the LRs reassigned.  

Another common reason for a false exclusion was due to the lack of separation of alleles 

during capillary electrophoresis.  This occurred when peaks that differed by one base pair (for 

example a 9.3/10 at TH01) were not separated sufficiently during electrophoresis and one 

was subsequently not designated at analysis [14].  In all identified occasions an allele 

corresponding with a minor contributor was ‘hidden’ within the shoulder of an allele from a 

major contributor.  Affected loci were identified by reviewing the electropherogram, and the 

locus was subsequently ignored during the interpretation.   

3.2 Results for Experiment 1 

Violin plots [20] showing the densities of log10(LR) per APH range are provided in Figures 4 

through 6 for apparent three, four and five contributor mixtures, respectively.  The percentage 

of non-contributors giving LR = 0 is given at the bottom of each plot.  The plots show the 

general trends for both Hp and Hd results.   

Plots of log10(LR) versus APH for all mixtures are given in the supplementary material 

Figures S1 through S9, plotted by apparent number of contributors.  These plots are also 

separated into Hp true (LRs for true donors) and Hd true results (LRs for 10,000 false donors) 

and Hp and Hd true combined in order to help visualise the trends.  In order to facilitate 

comparison between plots the axis scales have been retained for the same N.  For the Hp true 

results where apparent N differed from the true N these results are indicated with a different 

plotting symbol.  LR results of 0 (exclusions) have been plotted at -40 on the log10 scale. 

Normalisation of the CE platform (3130 versus 3500) had no effect on the trends present in 

the data and is not shown. 

The vertical line of points in Figure S8 at 50 rfu where log10(LR)>1 are two siblings from a 

family study that included their biological father and mother.  Due the complete allele sharing 

with both parents the APH for both siblings were calculated at half the AT, which is 

artificially low.  

Figures 4 through 6 show the same trends as seen in previous work [14, 21], with the addition 

of information regarding the consequence of over or underestimating the number of 

contributors. With increased information present within the profile (either by greater amounts 

of DNA, or by fewer contributors) the power to discriminate contributors from non-

contributors increases, and there is a divergence of the LR from neutrality. Also consistent 

with previous findings [18], the underestimation of the number of contributors tends to either 

have little effect on the LR or will tend to exclude known contributors.  This occurs because 

genotype sets possessing unreal allele pairings are forced to be given weight within the 

analysis. Interestingly this exclusionary effect was reduced as mixture complexity increased 

to the point that there were no exclusions produced from underestimating the number of 

contributors in five person mixtures (Figure S1). We surmise that this is an effect of the 

increased allele sharing generally seen in higher order mixtures (Figure 2) meaning that there 

are increased opportunities for genotype sets to possess the genotypes of the known 

contributors, even when their number is underestimated. 

A plot of log10(LR)s for profiles generated using Identifiler™ Plus 28 cycles analysed on a 

3130 or 3500 are plotted in Figures S10 and S11 for the apparent three and four person 
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mixtures, respectively (Supplementary material).  As a visual aid we have added smoothed 

trend lines (LOWESS lines) for instrument type. These trend lines give a rough idea of the 

relationship between log10(LR) and APH for different cases. Any trend line is a compromise 

between smoothness and error. We did not get materially different results when trying other 

trend lines available in the ggplot2 package [22]. 

Applied Biosystems report a three- to fourfold increase in rfu scale with the 3500 models 

over the older Applied Biosystems 3100 and 3130 instruments [23].  This is evidenced by a 

general shift in the trend lines for the 3500 to the right in Figures S10 and S11.  The lines 

converge at high APH where the individual contributor profiles are likely fully represented 

and trend to log10(LR) = 0 as APH decreases.   

Plots of log10(LR)s for true contributors identified by kit type are given in Figures S12 and 

S13 for the apparent three and four person mixtures, respectively (Supplementary 

material).  The LOWESS trend lines for kit type are modelled.  These plots indicate the 

performance of the difference kits over APH for submitted profiles.  As the profiles analysed 

are not the same between the different kits they are not suitable for comparing performance 

of the different kits.  However, they do give an indication of general trends.  As an example, 

comparing the trend lines for Identifiler™ versus GlobalFiler™ mixtures, at higher per 

contributor APH the log10(LR)s are higher for GlobalFiler™ profiles, most likely due to the 

additional loci within the GlobalFiler™ kit compared with the Identifiler™ Plus 

kit.  Log10(LR) values for Identifiler™ profiles are generally higher at low contributor APH 

compared to GlobalFiler™ profiles, however.  This could be due to the increased variability 

of the GlobalFiler™ profiles, all of which were analysed on 3500 instruments, in some cases 

with cycle numbers greater than 28 [24].  A comparison of the Fusion 5C and Fusion 6C 

trend lines illustrates the increase in discrimination achieved by adding the highly 

polymorphic STR locus SE33 resulting in generally higher log10(LR)s.  

3.3 Results for Experiment 2 

The LRs for Hp true under the assumption of N and N+1 contributors are presented in Figure 

7.  Within Figure 7 the size of the plotting symbols is relative to the contributor’s proportion 

of the mixture.  The LRs for Hd true are summarised in Figures 8 and 9.     

The results shown in Figure 7 demonstrate some findings that are important for DNA mixture 

interpretation:  

1. The general result was a decrease in the LR for true contributors after the assumption 

of an additional contributor to the mixture.  The additional proposed contributor is 

interacting with the true contributors, diffusing the genotype weights, hence lowering 

the LR.   

2. When a proposed person of interest aligns with the dominant component in a mixed 

DNA profile, the support for their inclusion to a mixture will not be markedly altered 

by an increase in the number of contributors under which the DNA profile is 

analysed.  This is consistent with earlier findings [18]. 

3. Even when only donating a minor component of the total DNA, the change in LR 

produced by increasing the number of contributors is still not extreme. In no instances 

has an increase in the number of contributors seen an LR that strongly favours 

inclusion shift to one that favours exclusion. 

We also consider the effect of contributor overestimation on Hd true tests.  Figure 8 shows the 
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distribution of Hd true log10(LR) values for three person mixtures when considered as 

originating from three (N) or four (N+1) contributors.  Figure 9 shows the results of the same 

analysis but when considering four person mixtures as originating from either four (N) or five 

(N+1) individuals.  The bulk of the distribution for the three person mixtures analysed as 

three is at LR = 0 (90% of all LRs) represented by log10(LR) = -30 in Figure 8.  In Figure 9, 

81% of four person mixtures analysed as four resulted in LR = 0, again represented by 

log10(LR) = -30. 

Figures 8 and 9 show that, when analysed using the true number of contributors, the instances 

of Hd true comparisons that lead to outright exclusions is greatly increased. Put another way, 

inflating the number of contributors leads to an increase in non-zero LRs. In fact, the most 

common occurrence from inflating the number of contributors is that during deconvolution 

the additional proposed contributor is assigned a very low template (near 0) and can possess 

any genotype (including complete dropout) with relatively even weight. This is visually seen 

in Figures 8 and 9 by the peak of log10(LR)s just below 0. 

3.4 Allele Sharing 

A demonstration of the effect that allele sharing has on the LR is confounded by other factors 

that affect the magnitude of the LR, such as: 

 The amount of DNA that the individual has donated to the sample, 

 The mixture proportions of the contributors (mixtures at an even mixture proportion 

will tend to have lower LRs, due to the reduction in information that peak heights 

provide to determine genotype sets), 

 Masking of minor contributors in stutter positions of major contributors. 

An individual that shares 100% of alleles with the other contributors to a mixture can still 

have their genotype resolved completely, based on peak heights, given the right 

circumstances (as seen in Figure S8 for the family set). The ability to use peak heights in this 

way is one of the main drivers for the differences in LRs produced between fully and semi-

continuous systems. In Figure 10 we show the LR (on log10 scale) for all data in the study, 

broken up into three categories of allele sharing, 0 to 0.5, 0.5-0.7 and 0.70-1.0. The lines in 

Figure 10 are LOWESS lines to demonstrate the general trends of the data. 

 

From Figure 10, it appears that the greater the allele sharing, the less the power there is to 

discriminate a true contributor from a non-contributor. This trend is intuitive as it would be 

expected that the more an individual’s alleles are already accounted for by others in the 

mixture, the less ‘need’ there is for someone possessing those alleles to reasonably explain 

the observed peaks in the mixture. However, further experimentation shows that this apparent 

trend is totally confounded by the number of contributors to the mixture. Figure 11 shows the 

same style of result as Figure 10, but plotted by number of contributors.  In Figure 11 the 

recovered weight of evidence is plotted, that is, log10(LR)/log10(1/RMP).  RMP is the 

conditional match probability following the Balding and Nichols model [25] and a theta (FST) 

of 0.01.  Carrying out this transformation accounts for the different profiling systems that are 

being combined in this meta-analysis.  In these plots the y-axis is bounded by one 

demonstrating that the LR cannot exceed one divided by the random match probability.   
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The trend seen in Figure 2 is that higher order mixtures tend to have true contributors that 

share more alleles (because there are more of them to potentially share), and Figures S1 to S9 

demonstrate that higher order mixtures tend to have less discrimination power. Therefore, 

there is a correlation between allele sharing and LR evident in Figure 10, particularly at low 

APH. In Figure 11 this trend disappears, showing that it is an effect of number of 

contributors, and not allele sharing, that is the main driver to LR change.  

In Figure 12 we plot a density plot of log10(LR)/log10(1/RMP) by the amount of allele sharing 

of the non-contributors with the true contributors.  The log10(LR)/log10(1/RMP) cannot 

exceed one, which would indicate a fully resolved component.  Inspection of Figure 12 shows 

that as the fraction of shared alleles increases the log10(LR)/log10(1/RMP) for the non-

contributor increases.  As allele sharing of the non-contributors with the true contributors 

decreases, the log10(LR)/log10(1/RMP) decreases with more observations around zero, 

indicated by the broadening of shape.  Figure 12 shows that non-contributors are unlikely to 

yield large LRs even if they share many alleles with the true contributors. In other words, 

non-contributors that share most of their alleles with the mixture’s donors can typically still 

be excluded because the peak heights make their inclusion unlikely. 

On the other hand, Figure 6 shows that true contributors can yield LRs close to the inverse of 

the single source match probability even in five person mixtures. This means that at least this 

mixture donor’s component is almost fully resolved on the basis of peak heights. This may be 

expected, for instance, in a 10:1:1:1:1 mixture where the major may be clearly resolved by 

simply ‘eyeballing’ the electropherogram. 

4.0 Discussion 

4.1 Performance of the system with regards to contributor number 

In principle, we observe less discriminatory LRs for true and non-contributors when the 

number of assigned contributors increases.  This has been demonstrated previously using 

STRmix™ [14, 21].  This does not mean that mixed DNA profiles containing more 

contributors are less reliable, just that they are less informative with respect to potential 

contributors.   

The true number of contributors to a crime profile is never known.  Within this work we have 

used the apparent number of contributors when interpreting the mixtures.  Apparent N was 

determined by each submitting laboratory using their own validated methods.  The assigned 

N can be fewer than the true N when individuals within a profile have “dropped out” (their 

alleles falling below the detection limit of the CE) and within mixtures of contributors with 

high amounts of allele sharing (an extreme example being mixtures of related individuals).  

Apparent N may be assigned a number higher than true N in the presence of artefacts, such as 

stutter, that are larger than expected.  This assignment can be confounded in saturated 

profiles. 

As the number of contributors to a DNA profile increases, the DNA mixture becomes more 

complex. Figures S1 through S9 show LRs generated for Hp and Hd true for apparent three, 

four and five person mixtures plotted against APH. As the number of contributors to the 

mixture increases the LRs trend towards one. This holds true for both Hp and Hd true although 

the effect for Hd true data is less clear given the number of data. As the number of 

contributors to a mixture increases, so too do the potential genotype combinations that can 
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explain the observed data. This results in an overall reduction in the weights assigned to each 

genotype set, as these weights are spread across more potential genotype sets.  This behaviour 

was previously described by Taylor [21]. 

When overestimating the number of contributors to a mixture (N+1) the LR generally 

decreased for true contributors.  This can be explained by STRmix™ spreading the weights 

for the true donors across more genotype sets.  For four person mixtures the magnitude of the 

effect on the LR for known contributors was somewhat dependent on the proportion that the 

donor contributed to the mixture. The effect was greater for minor contributors to the mixture 

and less for major contributors (represented by more data points on the x = y line within 

Figure 7).  Overestimating the number of contributors had little or no effect on the LR of the 

major contributor to the mixture, demonstrated by the largest circles sitting on the x = y trend 

line.  In these cases the additional proposed contributor was modelled as a trace contributor, 

sharing alleles with the true minor contributors to those mixtures and having little effect on 

the major.  For the three person mixtures the effect was more visible across a range of 

mixture proportions.  This was likely due to similarities in mixture proportions of the 

different contributors, with no obvious major contributors. 

The effect of overestimation of the number of contributors was also determined for non-

contributors using Hd true tests.  When assuming N+1 the number of occurrences of non-

contributors resulting in non-exclusionary LRs increased.  During deconvolution the 

additional proposed contributor is assigned very low template and can possess any genotype 

leading to these results. 

In summary, overestimation of the number of contributors generally leads to lower LRs for 

true contributors (Figure 7) and an increase in LRs for non-contributors (Figure 8).   

Underestimating the number of contributors can result in false exclusions of true donors.  In 

this study, this is seen when apparent N is fewer than true N.  This is demonstrated in the Hp 

true plots within the supplementary material where apparent N that differs from known N are 

indicated with a different plotting symbol.   

When assigning N, for false donors the only risk is overestimation, as there is a small 

increase in the number of very low grade false inclusions.  With respect to the LR for true 

donors, you are either correct or conservative when N is either under or overestimated.   

In Figure 13 we provide a plot showing the level of over and under-estimation of the apparent 

N compared to the known N in this study. 

N against known N.  As an example, -1 indicates apparent N was one fewer than known N. 

 

Figure 13 shows that an underestimation of N was more common than an overestimation of N. 

There are three broad reasons why N might be underestimated: 

1) One contributor has donated so little DNA that their presence is unseen in the DNA 

profile, we call this the tiny minor scenario; 

2) Contributors are present so that one or more is completely masked by others in the 

profile, and in a way so that peak height does not reveal their presence. This is the 

hidden contributor scenario; 
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3) There is a combination of multiple low-level contributors that, due to some masking 

and some dropout, produce a profile where the apparent number of contributors is fewer 

than the known number of contributors. This is the low level donors’ scenario. 

Each of these is discussed in turn below.   

4.1.1 The tiny minor 

Any profile is a result of fragments of DNA that have been aliquoted from a DNA extract and 

then amplified during PCR. There exists a possibility that no DNA fragments from a minor 

DNA donor have been sampled for PCR. We first ask what we consider to be the correct 

number of contributors; the number of different individual’s DNA in the DNA extract, or the 

number of different individual’s DNA in the PCR? If it is the former, then we would ask; if 

the individual has contributed so little DNA that the observed fluorescence in the DNA 

profile is not affected by their presence, then what purpose is served by considering them as a 

contributor? We note that many of the underestimates of number of contributors in this study 

arise from such situations. 

4.1.2: The hidden contributor 

Consider a DNA profile where multiple individuals, are contributing to a DNA profile, 

however they possess sufficient allelic overlap so that the DNA profile appears as a lower 

order mixture. The apparent number of contributors being lower than the known number of 

contributors relies on the DNA profile being formed in such a way that peak imbalances will 

not indicate the true number of contributors. For example, a combination of two individuals 

who are homozygous at each locus, combined in equal proportions to a DNA sample will 

always appear single source. However, this risk of multiple contributors being combined to 

meet theses specifications is very remote, and artificial. It only tends to occur in mixtures of 

family members, such as a child and their parents donating equal amounts of DNA to a 

sample.  The Coble et al. [26] experiment is valuable but does not take into account peak 

heights, and so the study does not reflect the information that peak heights provide analysts in 

their assignment of N. This is evident in the difference between the results obtained by Coble 

et al. and our work. For example, Coble et al. reported the probability of a known five-person 

mixture presenting as an apparent five person mixture was less than 0.01, whereas in our 

study, based on human assignment, this probability is 0.36 (and noting that many of the 

remaining mixtures fall into the tiny minor and low donor scenarios). 

4.1.3: The low level donors’ scenario 

This scenario is where there are multiple low level contributors, who are present in low 

amounts such that they exhibit significant dropout and so in combination the apparent 

number of contributor is fewer than the known number of contributors. This is a scenario that 

could plausibly occur with reasonable probability when multiple low level contributors are 

present (see [16] for an exploration of this). Experimentation has shown that very low level 

contributors will yield LRs of approximately one. It is likely that when analysed under the 

known number of contributors, all true (and a majority of false) contributors give this neutral 

LR value. In other words, the profile does not have the information in order to distinguish true 

from false donors. If analysed as the apparent number of contributors then the likely outcome 

is an exclusion of the known contributors (and more exclusions of non-contributors).  The 

primary difference in LR between known and apparent number of contributors is between 
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neutral and possibly exclusionary, which we could argue presents less risk of misleading a 

court. 

4.1.4: Overestimating the number of contributors 

Our studies show that the chance of overestimating N in relation to the known value is less 

common that underestimation and cannot be predicted so easily by simulation as in Coble et 

al. [26]. It requires two events to occur: 

1) There is a stochastic event, such as a peak imbalance, high stutter or drop-in, which 

occurs at an improbable level, 

2) The analyst interpreting the profile feels that the out-of-place fluorescence has 

resulted in a profile that is more likely to exist if it has originated from more 

contributors that the known number of contributors. 

Figure 7 shows that the effect of overestimation of N is relatively mild on known contributors 

to a DNA profile.  STRmix™ assigns near-zero mass to the non-existent contributor, leaving 

the other contributors relatively unchanged. The largest effect is to decrease the LR for minor 

known contributors. For non-contributors, Figure 8 shows the effect that has previously been 

described, i.e. that an overestimation of N tends to increase low-level LRs for non-

contributors.  In effect the experiment is showing the practical functioning of the catch-all 

statement suggested earlier. 

Our findings show that as mixture complexity increases, the ability of an analyst to designate 

the known number of contributor is reduced. As explained, it is actually often the apparent 

number of contributors that is the more appropriate value to choose for analysis. In assigning 

apparent number of contributors the overwhelming result is alignment with the desired trends 

in LRs with regards to profile complexity and DNA amount (i.e. those described in [21], 

where known number of contributors was used for all analyses) are obtained. In the rare 

circumstances where the known contributors were not supported as donors of DNA to the 

profile, this was due to one of the three underestimate conditions described above in 4.1.1 

through 4.1.3 above. 

4.2 Performance as a function of amount of allele sharing 

Within Figure 10 the trend is that the greater the allele sharing, the less the power to 

discriminate a true contributor from a non-contributor.  However, this relationship is 

dominated by the number of contributors within the mixture (as seen in Figure 11).  Higher 

order mixtures result in less informative LRs.  This effect is related more to the number of 

contributors within a mixture than the amount of allele sharing between contributors within 

the mixture.  There is a relationship between the number of contributors and proportion of 

allele sharing within a mixture.  It has previously been shown that the probability of a higher 

order mixture appearing as having originated from one fewer individual based on allele count 

alone is high [26, 27].  For example, Coble et al. calculated the probability of a six 

contributor profile appearing as a five contributor profile based on allele count as 0.8599 for 

the GlobalFiler™ 24 locus multiplex [26]. The study by Coble et al. did not take into account 

peak height, thereby making the values in their study a worst case scenario.  

4.3 Performance of the system with regards to amount of DNA 

In principle, we observe less discriminatory LRs for true and non-contributors when the APH 
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(template) decreases per contributor.  Again, this does not mean that mixed DNA profiles 

with contributors containing less DNA are unreliable, just they are less informative with 

respect to the true and non-contributors.   

PCAST describe limits on PG reliability based on mixture proportion and number of 

contributors.  Per contributor template is more informative of LR than mixture proportion.  

With respect to mixture proportion, the limit is not the software but the hardware.  For 

example, assuming a minor contributor’s alleles within a mixture are present just above the 

analytical threshold of a 3130 (typically 50 rfu) and a major contributor’s alleles are at the 

saturation limit (typically 7000 rfu), this would be maximum mixture proportion of 140:1.  

2293 out of the 2825 submitted profiles had at least one component who contributed less than 

20% of the sample. 

5.0 Conclusion 

In their review of published literature validating probabilistic genotyping, PCAST surmised 

that the limits of foundational validity extended to three person mixtures where the person of 

interest made up at least 20% of the profile. What was not taken into account during the 

PCAST review was a wealth of unpublished validation material residing in laboratories that 

had validated (or were in the process of validating) probabilistic genotyping software. Due to 

our involvement with STRmix™ we are aware of the breadth of such validation material for 

STRmix™ specifically, and assume that similar material must be present for other 

probabilistic genotyping systems. A disconnect exists between the PCAST desire for 

laboratories to publish their validation material in peer reviewed journals and the general 

resistance to such publications by the journals themselves.  This is for the completely 

understandable reason that they are generally not novel, or, individually, of general interest to 

the forensic community. 

PCAST has said “When further studies are published, it will likely be possible to extend the 

range in which scientific validity has been established to include more challenging samples. 

As noted above, such studies should be performed by or should include independent research 

groups not connected with the developers of the methods and with no stake in the outcome.” 

There has already been an example of published material that extend the PCAST limits, from 

the Forensic Biology laboratory at the Federal Bureau of Investigation [14]. We add to that 

published work, by compiling the STRmix™ validation material from 31 laboratories, which 

allows a novel look at data spanning laboratory technology and process. PCAST highlighted 

four key areas that they felt additional validation would be merited: 

(1) How well does the method perform as a function of the number of contributors to the 

mixture? How well does it perform when the number of contributors to the mixture is 

unknown?  

(2) How does the method perform as a function of the number of alleles shared among 

individuals in the mixture? Relatedly, how does it perform when the mixtures include 

related individuals?  

(3) How well does the method perform—and how does accuracy degrade—as a function 

of the absolute and relative amounts of DNA from the various contributors?  

(4) Under what circumstances—and why—does the method produce results (random 

inclusion probabilities) that differ substantially from those produced by other methods?  

We address points 1 to 3 in this study. It is unknown whether further addendums will be 
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released by the PCAST group, or whether there are any plans for a follow-up study in the 

future. The material we provide here demonstrates a foundational validity of, at least, the 

STRmix™ software method for complex, mixed DNA profiles to levels well beyond the 

complexity and contribution levels suggested by PCAST. The study was done in accordance 

with the specific manner outlined in the PCAST report. 
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Figure 1: Mixture proportions as calculated by STRmix™ and sorted by ascending proportion 

plotted by apparent N where 1a is apparent three, 1b apparent four and 1c apparent five N. 

Plots are smoothed for improved readability. 

 

Figure 2: Distribution of allele sharing (AS) for known contributors to mixtures, plotted by 

true N.   
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Figure 3: Stylised locus electropherogram with tabulated peak designations and their 

corresponding heights for a true five person mixture interpreted assuming four contributors 

 

Figure 4: Violin plot of log10(LR) versus APH for apparent three contributor mixtures 
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Figure 5: Violin plot of log10(LR) versus APH for apparent four contributor mixtures 

 

Figure 6: Violin plot of log10(LR) versus APH for apparent five contributor mixtures 
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Figure 7:  The LRs for Hp true for three and four person mixtures from one laboratory under 

the assumption of N and N+1 contributors.  The x = y line is shown.  The size of the plotting 

symbol represents the mixture proportion of the donor.   

 

Figure 8:  The LRs for Hd true for three person mixtures from one laboratory under the 

assumption of N and N+1.  The bulk of the distribution for the three person mixtures 

analysed as three is at LR = 0 (90% of all LRs) represented by log10(LR) = -30. 
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Figure 9:  The LRs for Hd true for four person mixtures from one laboratory under the 

assumption of N and N+1.  81% of four person mixtures analysed as four resulted in LR = 0, 

represented by log10(LR) = -30. 

 

Figure 10: The size of the log10(LR) by considering differing amounts of input DNA (APH) 

and amount of allelic sharing (AS).  The set of data points with high AS (0.7,1] are a family 

set (father, mother, children) where all alleles from the children are masked by the parents 

and therefore APH was set to half of the AT. 
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Figure 11: The size of the recovered weight of evidence log10(LR)/log10(1/RMP) by 

considering differing amounts of input DNA (APH) and amount of allelic sharing (AS) 

plotted by true number of contributors. 

 

Figure 12: Density plot of log10(LR)/log10(1/RMP) by the amount of allele sharing of the non-

contributors with the true contributors 
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Figure 13: Plot of percentage of mixtures showing various differences between apparent N 

and known  
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Table 1:  A list of the contributing laboratories, multiplex (kit) used, PCR cycle number, and CE instrument.  The total number of mixtures 

interpreted per laboratory are sorted by apparent number of contributors with the number of unique contributor combinations and minimum 

minor proportion as determined by STRmix™ indicated.  

     

Number of each mixture type  

Unique contributor combinations/total 

(Minimum minor contribution) 

Lab 
Samples submitted 

(true N) 
Kit 

Cycle 

Number 
CE 

Apparent 

3p 

Apparent 

4p 

Apparent 

5p 

L01 N3 = 24, N4 = 23 Fusion 5C 28 3130 
12/25 

(7%) 

12/22 

(7%) 

- 

L02 N3 = 19, N4 = 24 Identifiler™ Plus  28 3500 
4/21 

(6%) 

3/22 

(6%) 

- 

L03 
N3 = 88, N4 = 128, 

N5 = 48 
GlobalFiler™ 29 3500 

5/87 

(3%) 

6/161 

(<1%) 

2/16 

(5%) 

L04 N3 = 3, N4 = 3 NGM SElect™ 30 3130 
1/3 

(10%) 

1/3 

(6%) 

- 

L05 N3 = 39, N4 = 37 Fusion 6C 29 3130 
5/50 

(3%) 

4/26 

(<1%) 

- 

L06 N3 = 28, N4 = 69 Identifiler™ Plus 28 3130 
4/67 

(28%) 

2/30 

(12%) 

- 
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L07 N3 = 29, N4 = 30 Identifiler™ Plus 28 3130 
4/36 

(2%) 

1/23 

(2%) 

- 

L08 N3 = 19, N4 = 20 Fusion 6C 29 3500 
2/24 

(7%) 

1/15 

(4%) 

- 

L09 

N3 = 28, N4 = 8, N5 

= 6 
Fusion 5C 30 3500 

4/28 

(1%) 

2/8 

(2%) 

1/6 

(6%) 

N3 = 22, N4 = 22 Identifiler™ Plus  29 3500 
1/22 

(1%) 

1/22 

(2%) 

- 

L10 
N3 = 29, N4 = 52, N5 

= 12 
GlobalFiler™ 28 3500 

4/64 

(3%) 

4/29 

(1%) 

- 

L11 N3 = 69, N4 = 42 GlobalFiler™ 28 3500 
2/69 

(<1%) 

2/42 

(1%) 

- 

L12 N3 = 28, N4 = 32 NGM SElect™ 29 3500 
2/38 

(5%) 

1/22 

(5%) 

- 

L13 

N3 = 3, N4 = 3 NGM SElect™ 30 3130 
1/3 

(9%) 

1/3 

(3%) 

- 

N3 = 3, N4 = 3 
PowerPlex® ESI17 

Pro 
30 3130 

1/3 

(13%) 

1/3 

(6%) 

- 

L14 N3 = 10, N4 = 13 PowerPlex® 16 HS 30 3130 2/16 1/7 - 
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(7%) (5%) 

L15 

N3 = 26 
PowerPlex® ESI17 

Fast 
30 3130 

11/26 

(2%) 

- - 

N3 = 28 
PowerPlex® ESI17 

Fast 
30 3500 

11/28 

(2%) 

- - 

L16 N3 = 29, N4 = 11 Identifiler™ Plus  28 3130 
9/38 

(4%) 

 1/2 

(5%) 

- 

L17 N3 = 26, N4 = 32 GlobalFiler™ 29 3500 
2/32 

(4%) 

1/26 

(1%) 

- 

L18 N3 = 97, N4 = 46 Fusion 5C 29 3130 
7/108 

(7%) 

3/35 

(2%) 

- 

L19 N3 = 28, N4 = 30 Identifiler™ Plus  29 3130 
9/37 

(3%) 

15/21 

(2%) 

- 

L20 
N3 = 22, N4 = 23, N5 

= 12 
GlobalFiler™  29 3500 

9/42 

(<1%) 

4/13 

(5%) 

 1/2 

(1%) 

L21 N3 = 43, N4 = 39 Fusion 6C 29 3500 
14/59 

(4%) 

9/23 

(1%) 

- 

L22 
N3 = 62, N4 = 65, N5 

= 11 
GlobalFiler™ 29 3500 

27/69 

(3%) 

25/64 

(1%) 

2/5 

(7%) 
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L23 

N3 = 72, N4 = 64 Fusion 6C 29 3500 
6/83 

(1%) 

4/53 

(<1%) 

- 

N3 = 159, N4 = 60 Identifiler™ Plus  29 3130 
4/161 

(1%) 

3/58 

(<1%) 

- 

L24 N3 = 35, N4 = 36 GlobalFiler™  29 3500 
4/37 

(3%) 

3/34 

(2%) 

- 

L25 N3 = 20, N4 = 24 GlobalFiler™  29 3500 
1/20 

(5%) 

1/24 

(6%) 

- 

L26 N3 = 18, N4 = 12 Identifiler™ Plus  28 3130 
17/25 

(6%) 

3/5 

(<1%) 

- 

L27 N3 = 51, N4 = 42 Identifiler™ Plus  28 3500 
5/71 

(3%) 

2/22 

(<1%) 

- 

L28 
N3 = 12, N4 = 77, N5 

= 76, N6 = 65 
Fusion 5C 29 3500 

6/24 

(3%) 

7/151 

(<1%) 

6/55 

(<1%) 

L29 N3 = 52, N4 = 52 GlobalFiler™ 28 3500 
2/53 

(3%) 

1/51 

(1%) 

- 

 

L30 N3 = 31, N4 = 42 GlobalFiler™ 29 3500 
4/42 

(4%) 

3/31 

(<1%) 

 

L31 N3 = 63, N4 = 99, N5 GlobalFiler™ 29 3500 3/80 4/85 2/14 

ACCEPTED M
ANUSCRIP

T

Downloaded for Anonymous User (n/a) at Nova Southeastern University (main access) from ClinicalKey.com by Elsevier on March 17, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



Page 4 of 30 

= 17 (1%) (<1%) (<1%) 

 

TOTAL Number of each mixture type  

unique combinations/total 

(minimum minor contribution) 

205/1591 

(<1%) 

132/1136 

(<1%) 

14/98 

(<1%) 
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Table 2:  Summary of large inclusionary LRs for false contributors and percentage of 

overlapping alleles 

Number Kit 
Apparent 

N 
Known N LR 

Fraction of allele 

sharing 

1 GlobalFiler™ 3 3 505,924 0.81 

2 Identifiler Plus™ 3 3 379,716 0.90 

3 GlobalFiler™ 4 4 197,907 0.98 

4 GlobalFiler™ 3 4 134,486 0.83 

5 GlobalFiler™ 4 4 88,022 0.98 

6 GlobalFiler™ 4 5 53,019 0.93 

7 Fusion 6C 3 3 47,062 0.85 

8 Fusion 5C 3 3 43,065 0.78 

9 Fusion 5C 3 3 26,874 0.80 

10 GlobalFiler™ 3 3 19,340 0.67 

11 Fusion 5C 3 3 17,582 0.61 

12 Identifiler Plus™ 3 4 16,995 0.80 

13 Fusion 5C 4 4 15,765 0.80 

14 Identifiler Plus™ 3 3 14,446 0.87 

15 NGM SElect™ 3 4 13,717 0.78 

16 GlobalFiler™ 4 5 12,135 0.93 

17 Fusion 5C 4 6 11,188 0.93 

18 Fusion 5C 3 3 10,896 0.80 

19 Fusion 5C 3 3 10,309 0.82 

20 Identifiler Plus™ 3 3 10,298 0.80 
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