56 research outputs found

    Evolution of asymmetric organocatalysis: multi- and retrocatalysis

    Full text link

    Κβαντικοί Υπολογισμοί

    No full text
    We start this project by describing the quantum model on which the quantum computation theory has been built. The main part of this project has to do with the Fourier transform on finite abelian groups and its use in P.Shor0s quantum algorithm for factorizing integers in polynomial time. As well, we describe L.Grover0s quantum algorithm for searching an element in an unstructured database of N elements (which is of order O(pN)) and we prove that Grover0s algorithm is optimal

    Highly Enantioselective Hetero-Diels–Alder Reaction of 1,3-Bis-(silyloxy)-1,3-dienes with Aldehydes Catalyzed by Chiral Disulfonimide

    No full text
    Bulking up with F: The title reaction proceeds using 1 mol % of the new perfluoroisopropyl chiral disulfonimide catalyst 1 to deliver several 2,6-disubstituted and 2,5,6-trisubstituted dihydropyrones in good yields and with excellent enantiomeric ratios. The utility of this methodology is illustrated with the first enantioselective synthesis of a potent aromatase inhibitor

    A powerful chiral counteranion motif for asymmetric catalysis

    Full text link
    García García, P.; Lay, F.; Garcia Garcia, P.; Rabalakos, C.; List, B. (2009). A powerful chiral counteranion motif for asymmetric catalysis. Angewandte Chemie International Edition. 48(24):4363-4366. doi:10.1002/anie.20090176843634366482

    Enantioselective LaIII-pyBOX-Catalyzed Nitro-Michael Addition to (E)-2-Azachalcones

    Full text link
    A [La(OTf)3] complex with a new pyBOX ligand bearing a bulky 1-naphthylmethyl substituent at the 4-position of the oxazoline ring catalyzes the conjugate addition of nitroalkanes to a broad range of (E)-2-azachalcones, providing the expected nitro-Michael products with good yields and enanItiomeric excesses up to 87%. The optical purity of the products can be increased by a single crystallization. A plausible stereochemical model to account for the observed stereochemistry has been proposed.Financial support from the Ministerio de Ciencia e Innovacion (MICINN) and Fundo Europeu de Desenvolvimento Regional (FEDER) (grant number CTQ2009-13083) and from Generalitat Valenciana (grant numbers ACOMP/2012/212 and ISIC 2012/001) is acknowledged.Blay Llinares, G.; Incerti, C.; Muñoz Roca, MDC.; Pedro Llinares, JR. (2013). Enantioselective LaIII-pyBOX-Catalyzed Nitro-Michael Addition to (E)-2-Azachalcones. European Journal of Organic Chemistry. 1696-1705. https://doi.org/10.1002/ejoc.201201579S16961705P. Perlmutter Conjugate Addition Reactions in Organic Synthesis Pergamon Oxford 1992Alexakis, A. (s. f.). The Conjugate Addition Reaction. Transition Metals for Organic Synthesis, 553-562. doi:10.1002/9783527619405.ch3hCsákÿ, A. G., Herrán, G. de la, & Murcia, M. C. (2010). Conjugate addition reactions of carbon nucleophiles to electron-deficient dienes. Chemical Society Reviews, 39(11), 4080. doi:10.1039/b924486gde Vries (Ed.). (2011). Conjugate Addition Reactions. Stereoselective Synthesis 1. doi:10.1055/sos-sd-201-00304Howell, G. P. (2012). Asymmetric and Diastereoselective Conjugate Addition Reactions: C–C Bond Formation at Large Scale. Organic Process Research & Development, 16(7), 1258-1272. doi:10.1021/op200381wOno, N. (2001). The Nitro Group in Organic Synthesis. Wiley Series in Organic Nitro Chemistry. doi:10.1002/0471224480Halland, N., Hazell, R. G., & Jørgensen, K. A. (2002). Organocatalytic Asymmetric Conjugate Addition of Nitroalkanes to α,β-Unsaturated Enones Using Novel Imidazoline Catalysts. The Journal of Organic Chemistry, 67(24), 8331-8338. doi:10.1021/jo0261449García Mancheño, O., Tangen, P., Rohlmann, R., Fröhlich, R., & Alemán, J. (2010). Synthesis of Chiral Cyclic Nitrones by Asymmetric Addition of β-Ketosulfones to Nitroalkenes followed by Reductive Cyclization. Chemistry - A European Journal, 17(3), 984-992. doi:10.1002/chem.201001914Sil, D., Sharon, A., Maulik, P. R., & Ram, V. J. (2004). A concise synthesis of highly functionalized α,β-unsaturated γ-butyrolactones through ring contraction of 2H-pyran-2-ones. Tetrahedron Letters, 45(33), 6273-6276. doi:10.1016/j.tetlet.2004.06.093Blay, G., Hernández-Olmos, V., & Pedro, J. R. (2010). Enantioselective Henry Addition of Methyl 4-Nitrobutyrate to Aldehydes. Chiral Building Blocks for 2-Pyrrolidinones and Other Derivatives. Organic Letters, 12(13), 3058-3061. doi:10.1021/ol1010888Ballini, R., Barboni, L., Bosica, G., & Fiorini, D. (2002). One-Pot Synthesis of γ-Diketones, γ-Keto Esters, and Conjugated Cyclopentenones­ from Nitroalkanes. Synthesis, (18), 2725-2728. doi:10.1055/s-2002-35993Zhu, S., Yu, S., & Ma, D. (2008). Highly Efficient Catalytic System for Enantioselective Michael Addition of Aldehydes to Nitroalkenes in Water. Angewandte Chemie, 120(3), 555-558. doi:10.1002/ange.200704161Ballini, R., Bosica, G., Fiorini, D., Palmieri, A., & Petrini, M. (2005). Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 105(3), 933-972. doi:10.1021/cr040602rHanessian, S., & Pham, V. (2000). Catalytic Asymmetric Conjugate Addition of Nitroalkanes to Cycloalkenones. Organic Letters, 2(19), 2975-2978. doi:10.1021/ol000170gHanessian, S., Shao, Z., & Warrier, J. S. (2006). Optimization of the Catalytic Asymmetric Addition of Nitroalkanes to Cyclic Enones withtrans-4,5-Methano-l-proline. Organic Letters, 8(21), 4787-4790. doi:10.1021/ol0618407Mitchell, C. E. T., Brenner, S. E., García-Fortanet, J., & Ley, S. V. (2006). An efficient, asymmetric organocatalyst-mediated conjugate addition of nitroalkanes to unsaturated cyclic and acyclic ketones. Org. Biomol. Chem., 4(10), 2039-2049. doi:10.1039/b601877gPrieto, A., Halland, N., & Jørgensen, K. A. (2005). Novel Imidazolidine-Tetrazole Organocatalyst for Asymmetric Conjugate Addition of Nitroalkanes. Organic Letters, 7(18), 3897-3900. doi:10.1021/ol051301mGotoh, H., Ishikawa, H., & Hayashi, Y. (2007). Diphenylprolinol Silyl Ether as Catalyst of an Asymmetric, Catalytic, and Direct Michael Reaction of Nitroalkanes with α,β-Unsaturated Aldehydes. Organic Letters, 9(25), 5307-5309. doi:10.1021/ol702545zHojabri, L., Hartikka, A., Moghaddam, F. M., & Arvidsson, P. I. (2007). A New Imidazole-Containing Imidazolidinone Catalyst for Organocatalyzed Asymmetric Conjugate Addition of Nitroalkanes to Aldehydes. Advanced Synthesis & Catalysis, 349(4-5), 740-748. doi:10.1002/adsc.200600316Zu, L., Xie, H., Li, H., Wang, J., & Wang, W. (2007). Highly Enantioselective Organocatalytic Conjugate Addition of Nitromethane to α,β-Unsaturated Aldehydes: Three-Step Synthesis of Optically Active Baclofen. Advanced Synthesis & Catalysis, 349(17-18), 2660-2664. doi:10.1002/adsc.200700353Wang, Y., Li, P., Liang, X., Zhang, T. Y., & Ye, J. (2008). An efficient enantioselective method for asymmetric Michael addition of nitroalkanes to α,β-unsaturated aldehydes. Chemical Communications, (10), 1232. doi:10.1039/b717000aYang, Y.-Q., Chen, X.-K., Xiao, H., Liu, W., & Zhao, G. (2010). Organocatalyzed enantioselective Michael additions of nitroalkanes to enones by using primary–secondary diamine catalysts. Chemical Communications, 46(23), 4130. doi:10.1039/c002552fLiu, C., & Lu, Y. (2010). Primary Amine/(+)-CSA Salt-Promoted Organocatalytic Conjugate Addition of Nitro Esters to Enones. Organic Letters, 12(10), 2278-2281. doi:10.1021/ol1006407Kwiatkowski, P., Dudziński, K., & Łyżwa, D. (2011). Effect of High Pressure on the Organocatalytic Asymmetric Michael Reaction: Highly Enantioselective Synthesis of γ-Nitroketones with Quaternary Stereogenic Centers. Organic Letters, 13(14), 3624-3627. doi:10.1021/ol201275hKim, D. Y., & Huh, S. C. (2001). Enantioselective Michael reaction of nitroalkanes and chalcones by phase-transfer catalysis using chiral quaternary ammonium salts. Tetrahedron, 57(43), 8933-8938. doi:10.1016/s0040-4020(01)00891-2Bakó, T., Bakó, P., Szöllõsy, Á., Czugler, M., Keglevich, G., & Tõke, L. (2002). Enantioselective Michael reaction of 2-nitropropane with substituted chalcones catalysed by chiral azacrown ethers derived from α-d-glucose. Tetrahedron: Asymmetry, 13(2), 203-209. doi:10.1016/s0957-4166(02)00068-xAllingham, M. T., Howard-Jones, A., Murphy, P. J., Thomas, D. A., & Caulkett, P. W. R. (2003). Synthesis and applications of C2-symmetric guanidine bases. Tetrahedron Letters, 44(48), 8677-8680. doi:10.1016/j.tetlet.2003.09.162Corey, E. J., & Zhang, F.-Y. (2000). Enantioselective Michael Addition of Nitromethane to α,β-Enones Catalyzed by Chiral Quaternary Ammonium Salts. A Simple Synthesis of (R)-Baclofen. Organic Letters, 2(26), 4257-4259. doi:10.1021/ol0068344Arai, S., Nakayama, K., Ishida, T., & Shioiri, T. (1999). Asymmetric cyclopropanation reaction Under phase-transfer catalyzed conditions. Tetrahedron Letters, 40(22), 4215-4218. doi:10.1016/s0040-4039(99)00679-6Ooi, T., Fujioka, S., & Maruoka, K. (2004). Highly Enantioselective Conjugate Addition of Nitroalkanes to Alkylidenemalonates Using Efficient Phase-Transfer Catalysis ofN-Spiro Chiral Ammonium Bromides. Journal of the American Chemical Society, 126(38), 11790-11791. doi:10.1021/ja047047vOoi, T., Takada, S., Fujioka, S., & Maruoka, K. (2005). N-Spiro Chiral Quaternary Ammonium Bromide Catalyzed Diastereo- and Enantioselective Conjugate Addition of Nitroalkanes to Cyclic α,β-Unsaturated Ketones under Phase-Transfer Conditions. Organic Letters, 7(23), 5143-5146. doi:10.1021/ol0517170Ooi, T., Doda, K., & Maruoka, K. (2003). Highly Enantioselective Michael Addition of Silyl Nitronates to α,β-Unsaturated Aldehydes Catalyzed by Designer Chiral Ammonium Bifluorides:  Efficient Access to Optically Active γ-Nitro Aldehydes and Their Enol Silyl Ethers. Journal of the American Chemical Society, 125(30), 9022-9023. doi:10.1021/ja0352810Ooi, T., Takada, S., Doda, K., & Maruoka, K. (2006). Highly Diastereo- and Enantioselective Formal Conjugate Addition of Nitroalkanes to Nitroalkenes by Chiral Ammonium Bifluoride Catalysis. Angewandte Chemie, 118(45), 7768-7770. doi:10.1002/ange.200602787Baschieri, A., Bernardi, L., Ricci, A., Suresh, S., & Adamo, M. â A. (2009). Catalytic Asymmetric Conjugate Addition of Nitroalkanes to 4-Nitro-5-styrylisoxazoles. Angewandte Chemie, 121(49), 9506-9509. doi:10.1002/ange.200905018Hua, M.-Q., Cui, H.-F., Wang, L., Nie, J., & Ma, J.-A. (2010). Reversal of Enantioselectivity by Tuning the Conformational Flexibility of Phase-Transfer Catalysts. Angewandte Chemie, 122(15), 2832-2836. doi:10.1002/ange.200906814Davis, A. P., & Dempsey, K. J. (1995). Synthesis and investigation of a hindered, chiral, bicyclic guanidine. Tetrahedron: Asymmetry, 6(11), 2829-2840. doi:10.1016/0957-4166(95)00374-xWang, J., Li, H., Zu, L., Jiang, W., & Wang, W. (2006). Organocatalytic, Enantioselective Conjugate Addition of Nitroalkanes to Nitroolefins. Advanced Synthesis & Catalysis, 348(15), 2047-2050. doi:10.1002/adsc.200600247Vakulya, B., Varga, S., Csámpai, A., & Soós, T. (2005). Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters, 7(10), 1967-1969. doi:10.1021/ol050431sVakulya, B., Varga, S., & Soós, T. (2008). Epi-Cinchona Based Thiourea Organocatalyst Family as an Efficient Asymmetric Michael Addition Promoter: Enantioselective Conjugate Addition of Nitroalkanes to Chalcones and α,β-UnsaturatedN-Acylpyrroles. The Journal of Organic Chemistry, 73(9), 3475-3480. doi:10.1021/jo702692aLi, P., Wang, Y., Liang, X., & Ye, J. (2008). Asymmetric multifunctional organocatalytic Michael addition of nitroalkanes to α,β-unsaturated ketones. Chemical Communications, (28), 3302. doi:10.1039/b804540bRabalakos, C., & Wulff, W. D. (2008). Enantioselective Organocatalytic Direct Michael Addition of Nitroalkanes to Nitroalkenes Promoted by a Unique Bifunctional DMAP-Thiourea. Journal of the American Chemical Society, 130(41), 13524-13525. doi:10.1021/ja805390kDong, X.-Q., Teng, H.-L., & Wang, C.-J. (2009). Highly Enantioselective Direct Michael Addition of Nitroalkanes to Nitroalkenes Catalyzed by Amine−Thiourea Bearing Multiple Hydrogen-Bonding Donors. Organic Letters, 11(6), 1265-1268. doi:10.1021/ol900025bJiang, X., Zhang, Y., Chan, A. S. C., & Wang, R. (2009). Highly Enantioselective Synthesis of γ-Nitro Heteroaromatic Ketones in a Doubly Stereocontrolled Manner Catalyzed by Bifunctional Thiourea Catalysts Based on Dehydroabietic Amine: A Doubly Stereocontrolled Approach to Pyrrolidine Carboxylic Acids. Organic Letters, 11(1), 153-156. doi:10.1021/ol8025268Lu, H.-H., Wang, X.-F., Yao, C.-J., Zhang, J.-M., Wu, H., & Xiao, W.-J. (2009). Highly enantioselective organocatalytic Michael addition of nitroalkanes to 4-oxo-enoates. Chemical Communications, (28), 4251. doi:10.1039/b905033gMei, K., Jin, M., Zhang, S., Li, P., Liu, W., Chen, X., … Wang, W. (2009). Simple Cyclohexanediamine-Derived Primary Amine Thiourea Catalyzed Highly Enantioselective Conjugate Addition of Nitroalkanes to Enones. Organic Letters, 11(13), 2864-2867. doi:10.1021/ol9010322Yang, W., & Du, D.-M. (2010). Highly Enantioselective Michael Addition of Nitroalkanes to Chalcones Using Chiral Squaramides as Hydrogen Bonding Organocatalysts. Organic Letters, 12(23), 5450-5453. doi:10.1021/ol102294gManzano, R., Andrés, J. M., Álvarez, R., Muruzábal, M. D., de Lera, Á. R., & Pedrosa, R. (2011). Enantioselective Conjugate Addition of Nitro Compounds to α,β-Unsaturated Ketones: An Experimental and Computational Study. Chemistry - A European Journal, 17(21), 5931-5938. doi:10.1002/chem.201100241Keller, E., Veldman, N., Spek, A. L., & Feringa, B. L. (1997). Catalytic enantioselective Michael addition reactions of α-nitroesters to α,β-unsaturated ketones. Tetrahedron: Asymmetry, 8(20), 3403-3413. doi:10.1016/s0957-4166(97)00432-1Funabashi, K., Saida, Y., Kanai, M., Arai, T., Sasai, H., & Shibasaki, M. (1998). Catalytic asymmetric Michael addition of nitromethane to enones controlled by (R)-LPB. Tetrahedron Letters, 39(41), 7557-7558. doi:10.1016/s0040-4039(98)01644-xTaylor, M. S., Zalatan, D. N., Lerchner, A. M., & Jacobsen, E. N. (2005). Highly Enantioselective Conjugate Additions to α,β-Unsaturated Ketones Catalyzed by a (Salen)Al Complex. Journal of the American Chemical Society, 127(4), 1313-1317. doi:10.1021/ja044999sPalomo, C., Pazos, R., Oiarbide, M., & García, J. M. (2006). Catalytic Enantioselective Conjugate Addition of Nitromethane to α′-Hydroxy Enones as Surrogates of α,β-Unsaturated Carboxylic Acids and Aldehydes. Advanced Synthesis & Catalysis, 348(10-11), 1161-1164. doi:10.1002/adsc.200606076Wang, L., Zhang, Q., Zhou, X., Liu, X., Lin, L., Qin, B., & Feng, X. (2010). Asymmetric Conjugate Addition of Nitromethane to Enones Catalyzed by Chiral N,N′-Dioxide-Scandium(III) Complexes. Chemistry - A European Journal, 16(26), 7696-7699. doi:10.1002/chem.201000688(s. f.). doi:10.1021/ja027313Lu, S.-F., Du, D.-M., Xu, J., & Zhang, S.-W. (2006). Asymmetric Michael Addition of Nitroalkanes to Nitroalkenes Catalyzed byC2-Symmetric Tridentate Bis(oxazoline) and Bis(thiazoline) Zinc Complexes. Journal of the American Chemical Society, 128(23), 7418-7419. doi:10.1021/ja0604008Yang, X., Zhou, X., Lin, L., Chang, L., Liu, X., & Feng, X. (2008). Highly Enantioselective Direct Michael Addition of Nitroalkanes to Nitroolefins Catalyzed by La(OTf)3/N,N′-Dioxide Complexes. Angewandte Chemie, 120(37), 7187-7189. doi:10.1002/ange.200802285Ogawa, T., Mouri, S., Yazaki, R., Kumagai, N., & Shibasaki, M. (2011). Intermediate as Catalyst: Catalytic Asymmetric Conjugate Addition of Nitroalkanes to α,β-Unsaturated Thioamides. Organic Letters, 14(1), 110-113. doi:10.1021/ol202898eTaylor, M. S., & Jacobsen, E. N. (2003). Enantioselective Michael Additions to α,β-Unsaturated Imides Catalyzed by a Salen−Al Complex. Journal of the American Chemical Society, 125(37), 11204-11205. doi:10.1021/ja037177oGreiner-Bechert, L., Sprang, T., & Otto, H.-H. (2005). Reactions of Heteroaryl Substituted Propenones. Monatshefte f�r Chemie - Chemical Monthly, 136(4), 635-653. doi:10.1007/s00706-004-0265-8Molleti, N., Rana, N. K., & Singh, V. K. (2012). Highly Enantioselective Conjugate Addition of Malononitrile to 2-Enoylpyridines with Bifunctional Organocatalyst. Organic Letters, 14(17), 4322-4325. doi:10.1021/ol3015607Boersma, A. J., de Bruin, B., Feringa, B. L., & Roelfes, G. (2012). Ligand denticity controls enantiomeric preference in DNA-based asymmetric catalysis. Chemical Communications, 48(18), 2394. doi:10.1039/c2cc17350fHua, M.-Q., Wang, L., Cui, H.-F., Nie, J., Zhang, X.-L., & Ma, J.-A. (2011). A powerful synergistic effect for highly efficient diastereo- and enantioselective phase-transfer catalyzed conjugate additions. Chem. Commun., 47(5), 1631-1633. doi:10.1039/c0cc04321dEvans, D. A., Fandrick, K. R., Song, H.-J., Scheidt, K. A., & Xu, R. (2007). Enantioselective Friedel−Crafts Alkylations Catalyzed by Bis(oxazolinyl)pyridine−Scandium(III) Triflate Complexes. Journal of the American Chemical Society, 129(32), 10029-10041. doi:10.1021/ja072976iReetz, M. T., & Jiao, N. (2006). Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions. Angewandte Chemie, 118(15), 2476-2479. doi:10.1002/ange.200504561Matsumoto, K., Jitsukawa, K., & Masuda, H. (2005). Preparation of new bis(oxazoline) ligand bearing non-covalent interaction sites and an application in the highly asymmetric Diels–Alder reaction. Tetrahedron Letters, 46(34), 5687-5690. doi:10.1016/j.tetlet.2005.06.108Otto, S., & Engberts, J. B. F. N. (1999). A Systematic Study of Ligand Effects on a Lewis-Acid-Catalyzed Diels−Alder Reaction in Water. Water-Enhanced Enantioselectivity. Journal of the American Chemical Society, 121(29), 6798-6806. doi:10.1021/ja984273uRay, S. K., Singh, P. K., & Singh, V. K. (2011). Enantioselective Michael Addition of Malonates to 2-EnoylpyridineN-Oxides Catalyzed by Chiral Bisoxazoline–Zn(II) Complex. Organic Letters, 13(21), 5812-5815. doi:10.1021/ol202405vSingh, P. K., & Singh, V. K. (2010). Enantioselective Friedel−Crafts Alkylation of Pyrroles Catalyzed by PYBOX-DIPH-Zn(II) Complexes. Organic Letters, 12(1), 80-83. doi:10.1021/ol902360bBarroso, S., Blay, G., & Pedro, J. R. (2007). 2-Alkenoyl PyridineN-Oxides, Highly Efficient Dienophiles for the Enantioselective Cu(II)−Bis(oxazoline) Catalyzed Diels−Alder Reaction†. Organic Letters, 9(10), 1983-1986. doi:10.1021/ol0705752Barroso, S., Blay, G., Muñoz, M. C., & Pedro, J. R. (2008). Highly Enantio- and Diastereoselective Inverse Electron Demand Hetero-Diels-Alder Reaction using 2-Alkenoylpyridine N-Oxides as Oxo-Heterodienes. Advanced Synthesis & Catalysis, 351(1-2), 107-111. doi:10.1002/adsc.200800606Barroso, S., Blay, G., Muñoz, M. C., & Pedro, J. R. (2011). Highly Enantioselective Nitrone Cycloadditions with 2-Alkenoyl PyridineN-Oxides Catalyzed by Cu(II)−BOX Complexes. Organic Letters, 13(3), 402-405. doi:10.1021/ol102716eLivieri, A., Boiocchi, M., Desimoni, G., & Faita, G. (2010). Enantioselective Cycloadditions of 2-Alkenoylpyridine-N-oxides Catalysed by a Bis(oxazoline)/CuII Complex: Structure of the Reactive Intermediate. Chemistry - A European Journal, 17(2), 516-520. doi:10.1002/chem.201002017Kingsbury, C. A. (1998). D/H Exchange in Nitro Diastereomers. The Journal of Organic Chemistry, 63(12), 3838-3846. doi:10.1021/jo9717402www.ccdc.cam.ac.uk/data_request/cifS 2 6 7 2m RDesimoni, G., Faita, G., Guala, M., Laurenti, A., & Mella, M. (2005). A New Pyridine-2,6-bis(oxazoline) for Efficient and Flexible Lanthanide-Based Catalysts of Enantioselective Reactions with 3-Alkenoyl-2-oxazolidinones. Chemistry - A European Journal, 11(13), 3816-3824. doi:10.1002/chem.200401213Desimoni, G., Faita, G., Piccinini, F., & Toscanini, M. (2006). Enantioselective Mukaiyama-Aldol Reaction of Pyruvates and 1-Phenyl- 1-trimethylsilyloxyethene Catalyzed by Lanthanide/Pybox Complexes. European Journal of Organic Chemistry, 2006(23), 5228-5230. doi:10.1002/ejoc.200600716III S S [21b] III pyBOX-5 IIIHovinen, J., & Hakala, H. (2001). Versatile Strategy for Oligonucleotide Derivatization. Introduction of Lanthanide(III) Chelates to Oligonucleotides. Organic Letters, 3(16), 2473-2476. doi:10.1021/ol016093mAlexander, R., Balasundaram, A., Batchelor, M., Brookings, D., Crépy, K., Crabbe, T., … Wright, S. (2008). 4-(1,3-Thiazol-2-yl)morpholine derivatives as inhibitors of phosphoinositide 3-kinase. Bioorganic & Medicinal Chemistry Letters, 18(15), 4316-4320. doi:10.1016/j.bmcl.2008.06.076Phillips, A. J., Uto, Y., Wipf, P., Reno, M. J., & Williams, D. R. (2000). Synthesis of Functionalized Oxazolines and Oxazoles with DAST and Deoxo-Fluor. Organic Letters, 2(8), 1165-1168. doi:10.1021/ol005777
    corecore