878 research outputs found

    Locality in Theory Space

    Get PDF
    Locality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in "theory space", four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3: version accepted by JHE

    A Multicomponent eHealth Intervention for Family Carers for People Affected by Psychosis: A Coproduced Design and Build Study

    Get PDF
    Background: Psychosis, including schizophrenia, is the most common severe mental illness affecting 1% of the population worldwide. A large number of people provide long-term support and care for a relative with psychosis. Although psychoeducational interventions, especially those delivered through a face-to-face group format, have an established evidence base for improving the caregiving experience, well-being, and health outcomes, large-scale implementation and access remain limited. There is a demand for such provision to be made through the internet for greater flexibility and wider access. Objective: This study aimed to integrate participatory research methodologies by the public, patients, and carers into the eHealth (electronic health) intervention design and build process to improve the product’s usability and acceptability. Methods: We adapted a structured eHealth intervention build method to include participatory research activities involving key stakeholders and end users to co-design and coproduce our intervention. An expert advisory group (EAG) comprising public involvement members led the formative design and build work using an agile build process. Carers independent from the study were consulted on the evolving drafts of the intervention prototype through focus group meetings. These results were fed back into the intervention build work continuously to ensure end users’ input inform every stage of the process. Results: An EAG comprising individuals with lived experience of psychosis, carers, health care professionals, researchers, voluntary organization workers, and eLearning experts (n=14) was established. A total of 4 coproduction workshops were held over 1 year during which the alpha and beta prototypes were designed and built through the participatory research work. Alongside this, 2 rounds of focus group study with carers (n=24, in 4 groups) were conducted to seek consultation on end users’ views and ideas to optimize the intervention design and usability. Finally, the EAG carried out a Web-based walk-through exercise on the intervention prototype and further refined it to make it ready for an online usability test. The final product contains multiple sections providing information on psychosis and related caregiving topics and interactive discussion forums with experts and peers for psychosocial support. It provides psychoeducation and psychosocial support for carers through the internet, promoting flexible access and individualized choices of information and support. Conclusions: The participatory research work led to the coproduction of a eHealth intervention called COPe-support (Carers fOr People with Psychosis e-support). We believe the study methodology, results, and output have optimized the intervention design and usability, fitting the end users’ needs and usage pattern. COPe-support is currently being tested for its effectiveness in promoting carers’ health outcome through an online randomized controlled trial. Trial Registration: ISRCTN Registry ISRCTN89563420; http://www.isrctn.com/ISRCTN8956342

    New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC

    Full text link
    We introduce a novel technique designed to look for signatures of new physics in vector boson fusion processes at the TeV scale. This functions by measuring the polarization of the vector bosons to determine the relative longitudinal to transverse production. In studying this ratio we can directly probe the high energy E^2-growth of longitudinal vector boson scattering amplitudes characteristic of models with non-Standard Model (SM) interactions. We will focus on studying models parameterized by an effective Lagrangian that include a light Higgs with non-SM couplings arising from TeV scale new physics associated with the electroweak symmetry breaking, although our technique can be used in more general scenarios. We will show that this technique is stable against the large uncertainties that can result from variations in the factorization scale, improving upon previous studies that measure cross section alone

    Strong Double Higgs Production at the LHC

    Get PDF
    The hierarchy problem and the electroweak data, together, provide a plausible motivation for considering a light Higgs emerging as a pseudo-Goldstone boson from a strongly-coupled sector. In that scenario, the rates for Higgs production and decay differ significantly from those in the Standard Model. However, one genuine strong coupling signature is the growth with energy of the scattering amplitudes among the Goldstone bosons, the longitudinally polarized vector bosons as well as the Higgs boson itself. The rate for double Higgs production in vector boson fusion is thus enhanced with respect to its negligible rate in the SM. We study that reaction in pp collisions, where the production of two Higgs bosons at high pT is associated with the emission of two forward jets. We concentrate on the decay mode hh -> WW^(*)WW^(*) and study the semi-leptonic decay chains of the W's with 2, 3 or 4 leptons in the final states. While the 3 lepton final states are the most relevant and can lead to a 3 sigma signal significance with 300 fb^{-1} collected at a 14 TeV LHC, the two same-sign lepton final states provide complementary information. We also comment on the prospects for improving the detectability of double Higgs production at the foreseen LHC energy and luminosity upgrades.Comment: 54 pages, 26 figures. v2: typos corrected, a few comments and one table added. Version published in JHE

    Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures.</p> <p>Results</p> <p>In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages.</p> <p>Conclusions</p> <p>Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.</p

    Double-blinded, randomized controlled trial comparing real versus placebo acupuncture to improve tolerance of diagnostic esophagogastroduodenoscopy without sedation: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sedation prior to performance of diagnostic esophagogastroduodenoscopy (EGDE) is widespread and increases patient comfort. But 98% of all serious adverse events during EGDEs are ascribed to sedation. The S3 guideline for sedation procedures in gastrointestinal endoscopy published in 2008 in Germany increases patient safety by standardization. These new regulations increase costs because of the need for more personnel and a prolonged discharge procedure after examinations with sedation. Many patients have difficulties to meet the discharge criteria regulated by the S3 guideline, e.g. the call for a second person to escort them home, to resign from driving and working for the rest of the day, resulting in a refusal of sedation. Therefore, we would like to examine if an acupuncture during elective, diagnostic EGDEs could increase the comfort of patients refusing systemic sedation.</p> <p>Methods/Design</p> <p>A single-center, double blinded, placebo controlled superiority trial to compare the success rates of elective, diagnostic EGDEs with real and placebo acupuncture. All patients aged 18 years or older scheduled for elective, diagnostic EGDE who refuse a systemic sedation are eligible. 354 patients will be randomized. The primary endpoint is the rate of successful EGDEs with the randomized technique. Intervention: Real or placebo acupuncture before and during EGDE. Duration of study: Approximately 24 months.</p> <p>Discussion</p> <p>Organisation/Responsibility The ACUPEND - Trial will be conducted in accordance with the protocol and in compliance with the moral, ethical, and scientific principles governing clinical research as set out in the Declaration of Helsinki (1989) and Good Clinical Practice (GCP). The Interdisciplinary Endoscopy Center (IEZ) of the University Hospital Heidelberg is responsible for design and conduct of the trial, including randomization and documentation of patients' data. Data management and statistical analysis will be performed by the independent Institute for Medical Biometry and Informatics (IMBI) and the Center of Clinical Trials (KSC) at the Department of General, Visceral and Transplantation Surgery, University of Heidelberg.</p> <p>Trial registration</p> <p>The trial is registered at Germanctr.de (DRKS00000164) on December 10<sup>th </sup>2009. The first patient was randomized on February 2<sup>nd </sup>2010.</p

    Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    Get PDF
    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication
    corecore