2,072 research outputs found

    Improving prenatal diagnosis through standards and aggregation.

    Get PDF
    Advances in sequencing and imaging technologies enable enhanced assessment in the prenatal space, with a goal to diagnose and predict the natural history of disease, to direct targeted therapies, and to implement clinical management, including transfer of care, election of supportive care, and selection of surgical interventions. The current lack of standardization and aggregation stymies variant interpretation and gene discovery, which hinders the provision of prenatal precision medicine, leaving clinicians and patients without an accurate diagnosis. With large amounts of data generated, it is imperative to establish standards for data collection, processing, and aggregation. Aggregated and homogeneously processed genetic and phenotypic data permits dissection of the genomic architecture of prenatal presentations of disease and provides a dataset on which data analysis algorithms can be tuned to the prenatal space. Here we discuss the importance of generating aggregate data sets and how the prenatal space is driving the development of interoperable standards and phenotype-driven tools

    Chromophobe renal cell carcinoma with prolonged response to targeted therapy: a case report

    Get PDF
    Abstract Introduction Chromophobe renal cell carcinoma is universally accepted as a distinct subtype of renal cell carcinoma. There are conflicting reports on prognosis, and few data on response to treatment exist. Currently, we do not have any effective treatment for the metastatic disease apart from surgical procedures. Current strategies are based on results obtained in the context of clear cell-type renal cell carcinoma. Separate trials for rare histologies seem unfeasible and are unlikely to be performed. For these cases, clinical observations are an important part for advancing therapeutic insight. In recent years, novel tyrosine kinase inhibitors have been shown to have significant clinical benefit in advanced renal cell carcinoma. Case presentation We present the case of a 43-year-old Caucasian man with advanced chromophobe renal cell carcinoma treated with the tyrosine kinase inhibitor sunitinib and subsequently with sorafenib and the mammalian target of the rapamycin inhibitor everolimus, achieving a prolonged response and significant clinical benefit. We report an unexpectedly high efficacy of everolimus as a third-line treatment in a patient with metastatic chromophobe renal cell carcinoma. Conclusions Up to now, no published data from randomized clinical studies have addressed the question of efficacy of everolimus as a third-line treatment after failure of tyrosine kinase inhibitors. To the best of our knowledge, this case is the first report of chromophobe renal cell carcinoma treated successfully with sequential tyrosine kinase and mammalian target of rapamycin inhibitor therapy. Notably, the time on treatment with sunitinib exceeded four years. The case presented here implies that everolimus could be a viable option for patients with metastatic chromophobe renal cell carcinoma.</p

    Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Get PDF
    Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic

    The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation

    Get PDF
    We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains

    Isolated thumb carpometacarpal joint dislocation: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isolated thumb carpometacarpal dislocation is a rare injury pattern and the optimal treatment option is still controversial.</p> <p>Case Description</p> <p>We present a 27-year-old basketball player who underwent an isolated dorsal dislocation of the thumb carpometacarpal joint after a fall. The dislocation was successfully reduced by closed means but the joint was found to be grossly unstable. Due to inherent instability, repair of the ruptured dorsoradial ligament and joint capsule was performed.</p> <p>The ligament was detached from its proximal insertion into trapezium and subsequently stabilized via suture anchors. The torn capsule was repaired in an end-to-end fashion and immobilization of the joint was applied for 6 weeks.</p> <p>Results</p> <p>At 3-year follow up evaluation the patient was pain free and returned to his previous level of activity. No restriction of carpometacrpal movements or residual instability was noticed. Radiographic examination showed normal joint alignment and no signs of subluxation or early osteoarthritis.</p> <p>Conclusion</p> <p>Surgical stabilization of the dorsal capsuloligamentous complex may be considered the selected treatment option in isolated carpometacarpal joint dislocations, that remain unstable after closed reduction in young and high demand patients.</p> <p><b>Level of Clinical Evidence: </b>Level IV</p

    Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Get PDF
    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    Get PDF
    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite

    Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions

    Get PDF
    Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations

    Absence of VHL gene alteration and high VEGF expression are associated with tumour aggressiveness and poor survival of renal-cell carcinoma

    Get PDF
    International audienceBACKGROUND: The von Hippel-Lindau gene (VHL) alteration, a common event in sporadic clear-cell renal-cell carcinoma (CCRCC), leads to highly vascularised tumours. Vascular endothelial growth factor (VEGF) is the major factor involved in angiogenesis, but the prognostic significance of both VHL inactivation and VEGF expression remain controversial. The aims of this study were to analyse the relationship between VHL genetic and epigenetic alterations, VHL expression and VEGF tumour or plasma expression, and to analyse their respective prognostic value in patients with CCRCC. METHODS: A total of 102 patients with CCRCC were prospectively analysed. Alterations in VHL were determined by sequencing, Multiplex Ligation-dependent Probe Amplification (MLPA) and methylation-specific MLPA. Expression of pVHL and VEGF was determined by immunohistochemistry. Plasma VEGF was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: VHL mutation, deletion and promoter methylation were identified in 70, 76 and 14 cases, respectively. Overall, at least one VHL-gene alteration occurred in 91 cases (89.2%). Both VEGF tumour and plasma expression appeared to be decreased in case of VHL alteration. Median progression-free survival and CCRCC-specific survival were significantly reduced in patients with wild-type VHL or altered VHL and high VEGF expression, which, therefore, represent two markers of tumour aggressiveness in CCRCC. CONCLUSION: Stratifying CCRCCs according to VHL and VEGF status may help tailor therapeutic strategy
    corecore