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Abstract

Advances in sequencing and imaging technologies enable enhanced assessment in

the prenatal space, with a goal to diagnose and predict the natural history of disease,

to direct targeted therapies, and to implement clinical management, including

transfer of care, election of supportive care, and selection of surgical interventions.

The current lack of standardization and aggregation stymies variant interpretation

and gene discovery, which hinders the provision of prenatal precision medicine,

leaving clinicians and patients without an accurate diagnosis. With large amounts of

data generated, it is imperative to establish standards for data collection, processing,

and aggregation. Aggregated and homogeneously processed genetic and phenotypic

data permits dissection of the genomic architecture of prenatal presentations of

disease and provides a dataset on which data analysis algorithms can be tuned to

the prenatal space. Here we discuss the importance of generating aggregate data

sets and how the prenatal space is driving the development of interoperable stan-

dards and phenotype‐driven tools.
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Key points

What is already known about this topic?

� Data organization, homogenous processing, and aggregation are crucial for elucidating the

genotype/phenotype relationship.

� Deep phenotyping improves molecular diagnosis.

What does this review add?

� Describes efforts and methods to increase prenatal data aggregation and organization.

� Discusses how the prenatal space is driving the development of interoperable standards and

phenotype‐driven tools.
� Emphasizes the importance and development of a cloud‐based prenatal genotype‐
phenotype repository.

1 | INTRODUCTION

Until recently, the primary goal of prenatal diagnosis was to identify

severe fetal disorders to provide information that families could use

for medical decision making, including providing access to all repro-

ductive options, and preparing for a potentially medically complex

child. As newer molecular technologies such as genome and exome

sequencing have become available for clinical use, more precise fetal

precision medicine has become a reality.

The majority of sequencing studies to date have been performed

on postnatal cohorts with specific disease phenotypes, and have

begun to disentangle the genetic contributions to disorders such as

autism spectrum disorder and developmental delay.1–6 Little is

known regarding phenotype‐genotype correlations in the prenatal
setting since most variant databases, including ClinVar, Human Gene

Mutation Database, and gnomAD, do not have fetal specific anno-

tations. The frequencies of many variants and related phenotypes

discovered during fetal development are significantly less under-

stood, and hard to capture and computationally compare to existing

knowledge.7–11 Second, the spectrum of prenatal phenotypes, even

of Mendelian disorders with well‐described postnatal phenotypes, is
not well described and can represent a phenotype expansion.12–15

Emerging evidence, for example, suggests that SCN2A, an epilepsy

gene, can present prenatally with central nervous system structural

anomalies.16–18 Third, prenatal phenotypes are largely limited to

structural findings with no understanding of functional or cognitive

differences. Phenotypes also develop longitudinally during gestation,

with certain features appearing, disappearing, or changing during

pregnancy.10,19 Fourth, prenatal phenotypes can be more challenging

than postnatal phenotypes to categorize into disease‐based cohorts,
due to their focus on structural phenotypes or outcomes, including

intrauterine fetal demise.17,20,21 As many prenatal‐sequencing
studies are now performed on the trio of mother, father, and fetus,

there is an additional opportunity to learn about the effects of

maternal genetic variants on fetal health.22–27 Furthermore, “prena-

tal specific” variation may be identified, that is, variants that only

affect a fetus in utero of which phenotypic features are not observed

postnatally due to prenatal lethality. Such variation is suggested to

exist in an exome sequencing study of stillbirth.28 Improving our

understanding of the genetic and phenotypic architectures of peri-

natal development is crucial to optimizing patient care. Misinter-

pretation of the significance of a variant or failure to recognize a

genetic condition can lead to misdiagnosis, an incorrect prognosis,

inappropriate interventions, missed opportunities for treatment, and/

or an unexpected recurrence. Improving understanding of perinatal

genomic architecture will provide enhanced counseling on diagnosis,

natural history, and potential therapeutic options for families.

2 | METHODS: HOW DO WE DO THIS?

Achieving understanding of the genetic and phenotypic architectures

of the perinatal continuum will require the systematic organization

and aggregation of data, and leveraging algorithms for data inter-

pretation as is achieved for postnatal presentations of rare dis-

ease.29,30 Many techniques, approaches, and tools are already

established in the realm of postnatal Mendelian molecular di-

agnostics that prenatal experts can adopt and are discussed below.

2.1 | Data identification, generation, and collection

An initial step is the identification, generation, and collection of ge-

netic and phenotype information. Genetic information can be cate-

gorized by its source and laboratory methodology. In prenatal

diagnosis, various genetic assessments are used (e.g., chromosomal

microarray analysis, sequencing panels, exome and genome

sequencing) on various sample types (e.g., chorionic villi, amniotic

fluid, cord blood). In conjunction, phenotype data are typically gath-

ered, and a description is sent for analysis. Phenotype data collection

is often structured and includes specific features such as gestational

age and ultrasound findings, whereas clinical data is found unstruc-

tured in clinical notes, or in a short indication for clinical testing given

to a laboratory (e.g., intrauterine fetal demise). Recognizing the

importance of data aggregation and standardization, the Fetal Ge-

nomics Consortium (FGC), a consortium of centers striving to
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understand the genetic and phenotypic architectures of prenatal

presentations of disease, was established.31 The FGC focuses on data

generation and aggregation from prenatal sequencing consortia and

technology development and has established an international re-

pository of prenatal and genetic information. This genotype‐
phenotype repository is recognized by the Global Alliance for

Genomics and Heath (GA4GH), a non‐profit international consortium
that is developing standards for responsibly collecting, storing,

analyzing, and sharing genomic data. Research consortia, such as the

Prenatal Genetic Diagnosis by Genomic Sequencing (PrenatalSEQ,

NCT03936101) study in the ultrasonography (US) and Prenatal

Assessment of Genomes and Exomes study in the UK, have gener-

ated a large amount of prenatal sequencing and phenotypic data,

allowing for a base set of cases to demonstrate the value of aggre-

gation and standardization of data.32,33 Notably, data sharing may

require data agreements, patient consent and institutional review

board approval. Methods such as computerized consent and consent

to share with specific prenatal resources can be incorporated into

test requisition forms in collaboration with clinics and testing labo-

ratories.34–39 Given that the agreements can be challenging to

arrange due to varied institutional processes, streamlining such

processes can drastically reduce the logistical hurdles for data

sharing. Finally, through resources such as GenomeConnect,40 in-

dividuals can be directly engaged in collaboration with a sequencing

laboratory.

2.2 | Data ingestion, structure, and interoperable
standards

Clinical electronic health records (EHRs) are the primary source of

clinical phenotype data and are used to store hospital data from

imaging to clinical diagnoses, test orders, reports, medications, and

billing. The data stored in these are extremely heterogeneous and

rely on specialized messaging protocols such as HL7 V2 or HL7 Fast

Healthcare Interoperability Resources.41 While these are standards

within the medical informatics communities, they are complex and

not easily accessible to the research community.

Furthermore, the codified phenotype data within these systems

are often unsuited for precision/deep phenotyping as they rely on

broader disease‐based coding systems such as ICD‐10 or Systemized
Nomenclature of Medicine. A major advance in the field of deep

phenotyping came with the development of the Human Phenotype

Ontology (HPO).42 The HPO assigns each phenotype a unique iden-

tifier and defines relationships between phenotypes in a hierarchical

manner. For example, the term for macrocephaly has, as parental and

grandparental nodes, “increased head circumference” and “abnor-

mality of skull size,” respectively. While the HPO defines phenotypic

features, not disease states, HPO terms are associated with disease

terms in the Orphanet Rare Disease Ontology.43 As of 2023‐10‐09,
there are 18,052 terms, and 11,988 diseases with associated HPO

terms.44

To address the community's needs for a standardized clinical

case report supporting precision phenotypes, which could be inde-

pendent of the EHR, the GA4GH developed the phenopacket

Schema.45 The phenopacket Schema specifies a portable, structured

file analogous to high‐throughput sequencing file formats, such as
sequence alignment map and variant call format (VCF),46 used in the

genomics field. A phenopacket can include precision phenotypes,

variants, disease diagnoses, measurements, biosample/biopsy data as

well as therapeutic treatments and outcomes along with their evo-

lution over time. The schema specifically added fields for prenatal

temporality in the latest release, making it especially suited for use in

the prenatal space. Phenopackets can interact with other standards

for storing genetic alignment and variant level information (Table 1).

A detailed practical introduction to the usage of phenopackets in the

postnatal space has been previously published.47

Teams collaborating through GA4GH are creating a suite of

interoperable standards around which an ecosystem of analysis tools

can be created. Building on top of the Phenopacket and VCF stan-

dards, the Beacon protocol is an application programming interface

that provides ways to structure and search on genomic and pheno-

typic datasets, without requiring access to raw data.48,49 A specific

variant or phenotype‐based query can be made on a dataset orga-
nized to interact with Beacon, such as, “Is there a C at chromosome

13 at position 32,936,732?” with a “Y/N” answer. Different in-

stitutions can implement Beacon and create a Beacon Network,

allowing federated search over multiple datasets. A federated

network is a model where separate sites (hospital systems, labora-

tories, internal networks, etc.) are connected via a centralized

TAB L E 1 Selection of global alliance for genomics and heath standards for genotype and phenotype data.

Standard Description Benefits/Limitations

Sequence alignment map (SAM) Sequence reads aligned to a reference genome Larger file size

Binary alignment map (BAM) Sequence reads aligned to a reference genome

(compressed)

Compressed

Compressed reference‐oriented alignment
map (CRAM)

Sequence reads aligned to a reference genome

(compressed)

Highly compressed/requires reference

Variant call format (VCF) Genomic variants and associated metadata Easy to annotate/initially developed for small

variants

Phenopacket Schema for storing case level phenotype and

genotype data

Stores all case information/software ecosystem in

development
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management framework, using consistent configurations and policies.

Such a network solves the problem of querying over multiple data-

sets across institutions (i.e., the data can be centrally queried but

does not leave the owner's domain). The current version of the

Beacon protocol can return data consent type in the returned query,

in case additional or raw data would like to be pursued for additional

studies. Establishing a prenatal Beacon network is a way to unite

prenatal genotype/phenotype data around the globe.

2.3 | Cloud based data storage and processing
infrastructures

Using standardized algorithms and pipelines allows for robust sta-

tistical analyses and reduces the sources of error. Cloud‐based
computing is a scalable way to process, analyze, and share data.

The three major providers of cloud computing infrastructure are

Google (Google Cloud Platform [GCP]), Microsoft (Azure), and

Amazon (Amazon Web Services). All provide similar products with

different implementations, with efforts in the genomics community

for interoperability between these standards.50

Recognizing the benefits of cloud computing, the Broad Institute

developed Terra, a bioinformatics platform built on GCP and Azure,

that facilitates running genomics workflows on the cloud,51 with

relative ease. Terra is part of the National Human Genome Research

Institute's Genomic Data Science Analysis, Visualization, and Infor-

matics Lab‐space, and is approved data sharing platform through the

National Institutes of Health (NIH) Genomic Data Sharing policies.52

Access controls set through Terra allow for facile data sharing and

federation of datasets, and Terra incorporates standards for robust

data security and is certified by the Federal Risk and Authorization

Management Program.

2.4 | Phenotype driven variant prioritization

Given the overwhelming number of detected variants in genome‐
wide sequencing data, variants must be annotated and filtered for

which a host of tools exist.53,54 Variants can be filtered on their

intrinsic characteristics such as consequence (e.g., loss of function), in

silico prediction of pathogenicity, absence or low minor allele fre-

quency in population databases (e.g., gnomAD), segregation with

disease and known inheritance (e.g., de novo), and classification in

variant databases (e.g., ClinVar).7,8 The remaining 10–100 s of vari-

ants are reviewed, requiring significant person‐time. Computational
methods to prioritize variants are critical, particularly when rapid

results are necessary for appropriate care options.

Multiple software tools for phenotype‐driven variant prioritiza-
tion have been developed.55–57 However, there are substantial dif-

ferences in terms of accessibility/usability, for example, with regard to

whether the software can be downloaded locally or is web‐based,
input file types and whether the algorithms are proprietary or free to

use.58 Tools that are freely available, that allow for local programmatic

access, and accept VCF files and HPO encoded phenotypes include:

Exomiser,59 LIkelihood Ratio Interpretation of Clinical AbnormaL-

ities,60 PhenIX61 and Xrare.62 Several other tools exist, but the ma-

jority are either web‐based, which can raise privacy concerns, or have
not undergone updates in recent years.58 Exomiser is in use by the

UK's Genomic medicine service, and is discussed further here. Exom-

iser uses standardized phenotypes, for example, HPO terms encoded

in a Phenopacket, to prioritize certain variants by combining variant

filtering and phenotype profile matching.57 Semantic similarity calcu-

lations are performed between the patient's phenotypes and existing

phenotypes described for either: (i) known human gene‐disease as-
sociations, (ii) model organism (mouse and zebrafish) gene orthologs,

and/or (iii) neighbor genes in a protein‐protein interaction network to
find a possible match. The use of phenotypic associations from model

organisms and protein interacting pairs enables phenotype‐based
strategies not only for known disease‐phenotype correlations but
also for novel disease gene discovery.57 The semantic similarity algo-

rithms for ontology‐based profile matching incorporate information
on the distance between terms in the ontology and their frequency to

compare exact or similar phenotypes (Figure 1). Cross‐species com-
parisons are possible by aligning individual disease phenotypes (HPO

terms) and individual mouse phenotypes (Mammalian Phenotype [MP]

terms).64 Pairwise phenotype calculations are ultimately aggregated

into a single score.65,66

Such an approach has already been piloted on large genomic

datasets with comprehensive phenotyping, including the 100,000

Genomes Project (100KGP) in the UK and is now used in mainstream

healthcare as part of the UK's Genomic Medicine Service.29,59 In this

study, 88% of the diagnoses were detected by Exomiser in the top

five prioritized candidates using a fully automated process that took

less than 5 min to run. These results were fed back to the clinical

geneticists in the diagnostic laboratories, allowing efficient case

interpretation. In contrast, restricting analysis to a curated virtual

panel of genes known to be associated with the recruited disease

category detected 54% of the diagnoses, albeit with higher precision.

The precision phenotyping of patients performed in the 100KGP

allowed the automated Exomiser approach as well as the inclusion of

additional virtual disease gene panels in the panel‐based approach
that increased detection there to 77% of diagnoses. Indeed, clinically

collected phenotype information can be sparse, and the value of al-

gorithms increases with (i) large datasets; and (ii) precision pheno-

types, highlighting the need for robust methods to collect detailed

phenotypic information.

3 | RESULTS

3.1 | The prenatal space is driving development of
interoperable standards and phenotype‐driven tools
out of necessity

The prenatal space is ideal for the development and tuning of tools

for gene discovery, phenotype driven variant prioritization, and
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developing a suite of tools built on standards. While progression

towards this vision is generally accepted in the genomics community,

it is essential in the prenatal space for several reasons. First, while

large sequencing studies have been performed on postnatal cohorts,

the coming years will bring a commensurate deluge of prenatal

sequencing data, facilitated by the dropping cost of genomic

sequencing, development of robust genome‐wide cell‐free DNA

sequencing methods, and the cohesion of the prenatal community

around the importance of genomics in patient care.67–72 Second, the

relationship between genotype and prenatal phenotype is not well

understood and there is an opportunity to define the spectrum of

prenatal phenotypes that exist for molecular diagnoses. This effort

will drive gene discovery, given that molecular diagnoses are not

identified in many prenatal cases, likely due to the lack of extensive

sequencing to characterize “prenatal‐specific” variation not observed
postnatally. Third, phenotypes can change during gestation, and

recording of phenotypes longitudinally is crucial, for example, using

the Phenopackets schema. Fourth, given the rapid development of

prenatal sequencing projects and consortia, there is an opportunity

to implement and develop standards and pipelines from the begin-

ning. Fifth, the unique nature of the prenatal space gives the op-

portunity to tune variant interpretation algorithms directly towards

prenatal diagnosis.

3.2 | Prenatal additions to the HPO

One tangible example is that the prenatal community has

contributed to the expansion of the HPO. While there are thou-

sands of terms to describe items that can be seen pre‐ and

postnatally, it was recognized that certain terms describing phe-

notypes specific to the prenatal period were missing from the

HPO, and some existing terms could use revised definitions. Over

the course of three years, from 2020 to 2023, the community

added 95 terms to the abnormality of prenatal development or birth

(HP:0001197) sub‐hierarchy, and revised definitions, synonyms,

and disease associations for the majority of the existing 152 terms,

for a total of 247 terms, or a 62% increase.73 One example of a

term added is Lemon Sign (HP: 0032269), referring to the shape of

the fetal skull at US, when the frontal bones lose their normal

convex contour and appear flattened or inwardly scalloped. Terms

were added to specify the time of onset of a particular phenotype,

with new terms added to describe embryonal, late first trimester,

second trimester, and third trimester onset. An example of HPO

terms related to a particular case is shown in Figure 2.74 It is

estimated that the current HPO covers roughly 85% of the terms

required for comprehensive annotation, and efforts continue to

revise and augment the HPO.

F I GUR E 1 Semantic search algorithms improve with comprehensive phenotypes: Prenatal phenotypes found in two fetuses diagnosed

postnatally with Cornelia de Lange syndrome and matching phenotypes associated with the diagnosis. Semantic search algorithms attempt to
match phenotypic feature profiles (encoded as terms from ontologies) from patients to phenotypic profiles associated with a particular disease.
A growing amount of comprehensive prenatal phenotype‐gene‐disease correlation data will increase the sensitivity of these algorithms and
permit the training of machine learning models. Cases adapted from Clark, et al.63 Circles with dots represent perfect HPO term matches, and
circles with lines represent partial HPO matches. HPO, human phenotype ontology.
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3.3 | Standardization of prenatal phenotyping

While like any phenotype, there can be variation in prenatal phe-

notyping; considerable efforts to standardize the collection have

been developed and are underway. The International Society of Ul-

trasound in Obstetrics & Gynecology (ISUOG) has developed practice

guidelines for ultrasound and fetal magnetic resonance.75,76 Most US

scans and reports contain similar fields, and work is progressing to

extract data directly from US machines and reports to a computable

format, such as a phenopacket. Artificial Intelligence approaches for

interpretation and collection of US data, while not yet standard of

care, have great potential.77 These approaches can help define

optimal ultrasound windows and allow direct identification and

interpretation of anomalies. While these efforts will help, the current

system of referrals to higher‐level centers will identify and define
most prenatal structural anomalies.

3.4 | Model organisms can help with (human)
variant interpretation/gene prioritization in the
prenatal space

The wealth of data surrounding phenotypes in model organisms,

provides the opportunity to improve variant interpretation and gene

prioritization and discovery in the prenatal space. The analogous

ontology for mammalian (mainly mouse) phenotype data is called the

Mammalian Phenotype Ontology (MPO) and contains 14,273 MP

terms (Ref.78; release 2023‐09‐11).79 Like the HPO “Abnormality of

prenatal development or birth (HP:0001197) grouping term, the

MPO includes an “embryo phenotype” (MP:0005380) parental term

that group terms describing abnormalities of mouse embryo devel-

opment, embryo morphology and physiology. Phenotypes have been

assessed and made available by the International Mouse Phenotyping

Consortium (IMPC), a systematic, high‐throughput effort to generate
and characterize knocked out mice,80 as well as the Mouse Genome

Informatics (MGI) database, a resource providing integrated genetic,

genomic, and biological data from literature curation especially.81

Combining data from the IMPC (DR 19.1) and MGI resources (Data

accessed 2023‐10‐12), 2215 mouse genes have associated abnormal
phenotypes under this grouping term. Most of these embryonic

phenotypes (2105; 95%) correspond to lines associated with pre-

weaning lethal phenotypes. Additionally, the term “growth/size/body

region phenotype” contains terms related to abnormal embryo size

and growth. Comparing the prenatal gene‐phenotype associations
between the MP and HPO, only 402 of these 2215 mouse genes have

a human ortholog with prenatal annotations under the grouping

terms “Abnormality of prenatal development or birth” and “Intra-

uterine growth retardation”. Despite certain limitations in the ability

of mouse models to mimic phenotypes observed in humans, this

would imply a large number of human genes with unannotated pre-

natal phenotypes.82–84 This has particular implications for under-

standing the genetics of intrauterine fetal demise, for which few

large‐scale studies have been performed.85–87 Importantly, and

given the nature of the standardized phenotyping protocol followed

by the IMPC, the homozygous knockouts resulting in complete or

incomplete penetrance lethal phenotypes and with embryonic ab-

normalities described, have also undergone an early adult pheno-

typing screen for the corresponding heterozygous model, which

permits establishing correlations between prenatal and postnatal

phenotypes.80 An important limitation, however, is the scarce em-

bryonic data for viable lines, where the phenotypic screens are per-

formed after birth, and hence the difficulty in comparing prenatal and

postnatal phenotypes for the same genotype. An example of an IMPC

mouse knockout with phenotypic information available for different

life stages is shown in Figure 3.

Mendelian genes are significantly overrepresented among

knockout mouse orthologs with a lethal phenotype. Consequently,

this set of mouse lethal genes with no known association to human

disease has been suggested as a compelling source of potential

candidate genes88 and different strategies combining data on mouse

viability with other sources of evidence have been successful

in identifying novel genes associated with neurodevelopmental

F I GUR E 2 Expansion of the prenatal HPO: Since 2020, over 90 new prenatal‐relevant terms have been added to the HPO. This is
demonstrated in the evolving fetal phenotype of a fetus with a PTPN11 variant, adapted from Malniece, et al.74 Newly added HPO terms,
including onset terms, are bolded and italicized. HPO, human phenotype ontology.
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conditions.89 Leveraging these gene sets in analysis may assist in

discovering genes important to perinatal development.

Furthermore, there is an effort to create a catalog of lethal

phenotypes in humans, including curation and collation of the

(earliest) age of death reported for known Mendelian disorders.90 In

its current version (2023‐09‐27), it contains 959 genes associated
with prenatal, neonatal, or infancy death based on Online Mendelian

Inheritance in Man clinical records. Additional integration of

both validated and candidate variants/genes identified through

sequencing studies of pregnancy loss, fetal and perinatal lethal

manifestations, may reveal novel disease‐associated genes along with
expansions of the clinical spectrum for known Mendelian genes.

3.5 | Building a longitudinal prenatal phenotype/
genotype resource

It was recognized that a resource that unites, standardizes, and ag-

gregates genomic and phenotypic studies in the prenatal sphere is

essential. The FGC has piloted a cloud‐based genotype‐phenotype
repository built on the bioinformatics platform Terra, called the Re-

pository of the International Fetal Genomics Consortium (RIFGC).

Major goals of the RIFGC are to use GA4GH interoperable

standards, create standardized pipelines for genotype/phenotype

analysis, and to allow the federation of datasets in the cloud. There is

already a host of genotype processing pipelines available on Terra,

including those using the Genome Analysis Toolkit91 for small variant

(single nucleotide variant/indel) as well as structural variant discov-

ery.6,92 Phenopackets have been implemented to allow the integra-

tion of phenotype‐driven analysis into pipelines. Search over

phenotypes and prioritized variants stored in phenopackets has been

implemented on Terra using the Beacon v2 protocol (Figure 4).

Governance and data organization are key to this enterprise. For

data contributors with data on premise servers, data are uploaded to

a cloud storage bucket associated with a particular workspace in

Terra. The contributor has full access to their data on the cloud, and

access permissions are given to the RIFGC. These raw data are then

processed identically between contributors, to create a homogenous

dataset for analysis and clinical inquiry. The RIFGC was selected as a

Driver Project by GA4GH for the recognition of the enterprise to

drive the development and implementation of GA4GH standards

important to the prenatal and genomic communities.93

4 | DISCUSSION

4.1 | Bringing it all together and next steps

It is crucial that genomic and phenotypic data utility is maximized

because it can translate directly to improved patient care. There will

F I GUR E 3 Summary of prenatal and adult mouse and human phenotypes associated with pathogenic variation in the Ndufs7/NDUFS7
gene. Shown are the abnormal phenotypes associated with the homozygous and heterozygous mouse Ndufs7 gene knockout from the IMPC at
different life stages and some of the overlapping phenotypes/physiological systems reported for the autosomal recessive disorder associated

with the corresponding human gene ortholog. HOM: homozygote, HET: heterozygote; AR: autosomal recessive; E: embryonic day; IMPC,
International mouse phenotyping consortium. (IMPC DR19.1; HPO v2023‐10‐09). [Colour figure can be viewed at wileyonlinelibrary.com]
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soon be a tsunami of additional prenatal genomic data available as

sequencing costs decrease and comprehensive prenatal cell‐free
DNA sequencing approaches develop.67,69 There are five primary

areas of need, summarized below:

Phenotype Data Ingestion/Standardization of Collection:While there

are established and emerging standards for genotype and phenotype

data, a major challenge remains to convert data to a comparable

form. This can be achieved by communities agreeing on a set of al-

gorithms for standard processing. For phenotype integration,

continued developments to extract data directly from clinical notes

and ultrasound machines are needed as is a standard data format

(such as a phenopacket). We envision that the community will

establish standards for prenatal clinical phenotype collection.

Longitudinal Genomic Accessibility: Understanding prenatal pre-

sentations of postnatal phenotypes is crucial, though relies on longi-

tudinal data collection. Fetal phenotype information is found in the

mother's chart, whereas pediatric data is found in a child's chart. For

liveborn individuals, linking this information is essential to under-

standing developmental trajectory and differences in phenotype. In

individuals with genetic disease without a strong prenatal phenotype,

understanding the postnatal phenotype can provide clues for features

to look for prenatally. This will be increasingly critical as sequencing

expands for use in pregnancies without a clear phenotype, allowing for

a genotype first approach and requiring ample data about prognosis

for counseling. With increased comprehensive sequencing performed

prenatally, the ability to use this information across the lifespan is

critical. Guidelines must continue to be developed for which genomic

testing results are returned and when, as well as when genome rean-

alysis should occur, for example, due to emerging phenotypes present

postnatally that were not present or appreciated prenatally.

Federation/Aggregation: Aggregating and federating a large

amount of data is important to gain statistical insights into the

genetic and phenotypic architecture of prenatal presentation of dis-

ease. The RIFGC is a way to unite data across space and time. While

the technical hurdles of federating data are surmountable, the

logistical aspects can be challenging. First, consent are different by

institution and there are different legal frameworks by jurisdiction.

Working towards developing computerized consent in collaboration

with the sequencing laboratory from the first patient encounter, with

the possibility of engaging in data sharing with a resource like the

RIFGC on a testing request form, would be steps in this direction.

Second, sharing data between institutions requires data use agree-

ments to protect data provenance and to ensure ethical conduct.

Easing methods of sharing across institutions without months of

agreement negotiation would lower the logistical barrier of federa-

tion and build crucial resources more readily. Third, to improve

genome accessibility and patient use of data, allowing individuals to

share data directly to a central repository increases participant

numbers and allows direct individual contribution to understanding

their genomic data. It should be noted that in certain jurisdictions, a

laboratory may own patient‐derived laboratory materials (e.g.,

sequencing libraries) and genomic data, thus necessitating agree-

ments with entities tasked with generation and preservation of pa-

tient data in addition to patient consent.

Development and Tuning of Algorithms and Resources Specific to the

Prenatal Space: The prenatal space offers numerous opportunities to

develop and tune algorithms, given sufficient data. For example,

statistical models, such as the logistic regression model used in

Exomiser, can be tuned to the prenatal space. However, there is a

scarcity of human prenatal genotype to phenotype knowledge, which

hinders these approaches. The ongoing curation of this knowledge

and use of model organism embryonic data will address this chal-

lenge. With large amounts of standardized and comprehensive

phenotype information, machine learning algorithms could be utilized

to predict prenatal features from known postnatal phenotypes.

4.2 | Provider tools

Ultimately, these resources need to be accessible to providers in the

clinic. Efforts are made to develop a web‐portal to search over all
cases for phenotype (e.g., return all cases at 20 weeks with congenital

heart defects) and specific variant information within the RIFGC re-

pository. In conjunction, a growing catalog of lethal phenotypes in

humans has been generated, including the collation of the (earliest)

age of death reported for known Mendelian disorders. This curation

effort will grow as more stillbirth cases are sequenced and incorpo-

rated into the RIFGC and as mouse models are generated.

5 | CONCLUSION

The rapid advances in sequencing technology, next‐generation im-
aging techniques, and cloud‐based computing set the stage for

transformative insights into the genomic underpinnings of the

F I GUR E 4 Workflow of the repository of the international fetal

genomics consortium. Genotype and phenotype data are uploaded
to the cloud and access is given to the repository. For exome and
genome sequencing data, standardized genomic pipelines generate

small and structural variant callsets. Phenotype information is
extracted and used to populate a Phenopacket. Genomic variants
are then filtered and interpreted and associated with a

Phenopacket. The Beacon v2 application programming interface
permits search by phenotype or variant and the possibility to
connect to additional prenatal data and other databases through
the interface.
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prenatal presentation of disease. This effort relies on the collection,

aggregation and homogenization of both comprehensive phenotype

and genetic data. Specific to these efforts is the need to capture data

longitudinally across the perinatal continuum. Such data will spur the

development of data processing algorithms and enable machine

learning applications specific to the prenatal space. These community

efforts will not only inform how genetics impacts prenatal diagnosis,

but also paves the way for improved counseling and intervention and

ultimately enhanced patient care.
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