43 research outputs found

    Instantaneous Normal Mode Analysis of Supercooled Water

    Full text link
    We use the instantaneous normal mode approach to provide a description of the local curvature of the potential energy surface of a model for water. We focus on the region of the phase diagram in which the dynamics may be described by the mode-coupling theory. We find, surprisingly, that the diffusion constant depends mainly on the fraction of directions in configuration space connecting different local minima, supporting the conjecture that the dynamics are controlled by the geometric properties of configuration space. Furthermore, we find an unexpected relation between the number of basins accessed in equilibrium and the connectivity between them.Comment: 5 pages, 4 figure

    The detection of diffuse emission in HCG 16 with XMM-Newton

    Full text link
    We report results obtained from analysis of the XMM-Newton observation of the compact group of galaxies HCG 16. It is a peculiar system composed of 7 spirals, 6 of which are active, and its nature as a bound system has been much debated. The EPIC camera observations give new insights into the X-ray parameters describing the physical status of the group. We detect diffuse X-ray emission with a rather elliptical morphology which extends to at least a radius of 135 h^{-1}_{50} kpc from the group centre. The spectrum within this region is well modelled by a thermal plasma with a temperature of 0.49+/-0.17 keV, and a non-zero metallicity. We measure a bolometric X-ray luminosity of 9.6 10{^40} h^{-2}_{50} erg/s which may be only a small fraction of the total luminosity because of the limit in spatial detection arising from the high background level. Despite its low temperature and luminosity, HCG 16 obeys the Lx-T relation obtained for brighter galaxy groups even if it lies in a very extreme position. The properties of the diffuse emission confirm the bound nature of HCG 16 even if the gas trapped in the potential well may not yet be virialized. This reopens the debate about the real nature of spiral-dominated galaxy groups, and on their role in a more general cosmological context.Comment: 13 pages, 6 figures, uses aa.cls style, Latex. Accepted for publication in A&

    Explaining Activities as Consistent Groups of Events: A Bayesian Framework Using Attribute Multiset Grammars

    No full text
    We propose a method for disambiguating uncertain detections of events by seeking global explanations for activities. Given a noisy visual input, and exploiting our knowledge of the activity and its constraints, one can provide a consistent set of events explaining all the detections. The paper presents a complete framework that starts with a general way to formalise the set of global explanations for a given activity using attribute multiset grammars (AMG). An AMG combines the event hierarchy with the necessary features for recognition and algebraic constraints defining allowable combinations of events and features. Parsing a set of detections by such a grammar finds a consistent set of events that satisfies the activity’s constraints. Each parse tree has a posterior probability in a Bayesian sense. To find the best parse tree, the grammar and a finite set of detections are mapped into a Bayesian network. The set of possible labellings of the Bayesian network corresponds to the set of all parse trees for a given set of detections.We compare greedy, multiple-hypotheses trees, reversible jump MCMC, and integer programming for finding the Maximum a Posteriori (MAP) solution over the space of explanations. The framework is tested for two applications; the activity in a bicycle rack and around a building entrance

    Electron screening in d(d, p)t for deuterated metals: temperature effects

    No full text
    The electron screening in the d(d, p)t reaction has been studied for the deuterated metal Pt at a sample temperature T = 20 °C–340 °C and for Co at T = 20 °C and 200 °C. The enhanced electron screening decreases with increasing temperature, where the data agree with the plasma model of Debye applied to the quasi-free metallic electrons. The data represent the first observation of a temperature dependence of a nuclear cross section. We also measured the screening effect for the deuterated metal Ti (an element of group 4 of the periodic table) at T = −10 °C–200 °C: above 50 °C, the hydrogen solubility dropped to values far below 1 and a large screening effect became observable. Similarly, all metals of groups 3 and 4 and the lanthanides showed a solubility of a few per cent at T = 200 °C (compared to T = 20 °C) and a large screening also became observable. Within the Debye model, the deduced number of valence electrons per metallic atom agrees with the corresponding number from the Hall coefficient, for all metals investigated

    Evaluation of reliability on STR typing at leukemic patients used for forensic purposes

    No full text
    Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010-2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references
    corecore