3,586 research outputs found
Angiotensin II receptor blockade alleviates calcineurin inhibitor nephrotoxicity by restoring cyclooxygenase 2 expression in kidney cortex
Aim: The use of calcineurin inhibitors such as cyclosporine A (CsA) for immunosuppression after solid organ transplantation is commonly limited by renal side effects. CsA-induced deterioration of glomerular filtration rate and sodium retention may be related to juxtaglomerular dysregulation as a result of suppressed cyclooxygenase 2 (COX-2) and stimulated renin biosynthesis. We tested whether CsA-induced COX-2 suppression is caused by hyperactive renin-angiotensin system (RAS) and whether RAS inhibition may alleviate the related side effects. Methods: Rats received CsA, the RAS inhibitor candesartan, or the COX-2 inhibitor celecoxib acutely (3 days) or chronically (3 weeks). Molecular pathways mediating effects of CsA and RAS on COX-2 were studied in cultured macula densa cells. Results: Pharmacological or siRNA-mediated calcineurin inhibition in cultured cells enhanced COX-2 expression via p38 mitogen-activated protein kinase and NF-kB signalling, whereas angiotensin II abolished these effects. Acute and chronic CsA administration to rats led to RAS activation along with reduced cortical COX-2 expression, creatinine clearance and fractional sodium excretion. Evaluation of major distal salt transporters, NKCC2 and NCC, showed increased levels of their activating phosphorylation upon CsA. Concomitant candesartan treatment blunted these effects acutely and completely normalized the COX-2 expression and renal functional parameters at long term. Celecoxib prevented the candesartan-induced improvements of creatinine clearance and sodium excretion. Conclusion: Suppression of juxtaglomerular COX-2 upon CsA results from RAS activation, which overrides the cell-autonomous, COX-2-stimulatory effects of calcineurin inhibition. Angiotensin II antagonism alleviates CsA nephrotoxicity via the COX-2-dependent normalization of creatinine clearance and sodium excretion
Fretting of CoCrMo and Ti6Al4V Alloys in Modular Prostheses
Implantation of a total hip replacements (THR) is an effective intervention in the management of arthritis. Modularity at the taper junction of THR was introduced in order to improve the ease with which the surgeon could modify the length of the taper section and the overall length of the replacement. Cobalt chromium (Co–28Cr–6Mo) and titanium (Ti–6Al–4V) alloys are the most commonly used materials for the device. This study investigates the fretting behaviour of both CoCr–CoCr and CoCr–Ti couplings and analyses their damage mechanisms. A reciprocating tribometer ball on plate fretting contact was instrumented with in situ electrochemistry to characterise the damage inflicted by tribocorrosion on the two couplings. Fretting displacements amplitudes of 10, 25 and 50 mm at an initial contact pressure of 1 GPa were assessed. The results reveal larger metallic volume loss from the CoCr–CoCr alloy compared to the CoCr–Ti alloy, and the open circuit potential indicates a depassivation of the protective oxide layer at displacement amplitudes .25 mm. In conclusion, the damage mechanisms of CoCr–CoCr and CoCr–Ti fretting contacts were identified to be wear and fatigue dominated mechanisms respectively
Recommended from our members
Woven natural fibre reinforced composite materials for medical imaging
Repeatable patient positioning is key to minimising the burden on planning radiotherapy treatment. There are very few materials commercially available which are suitable for use in all common imaging and treatment modalities such as magnetic resonance imaging (MRI), X-Ray computed tomography (CT) and radiotherapy. In this article, we present several such materials based on woven natural fibres embedded in a range of different resin materials which are suitable for such applications. By investigating a range of resins and natural fibre materials in combination and evaluating their performance in terms of MRI and X-Ray imaging, we show that a woven cotton material impregnated with a two-part epoxy resin provides a 15% improvement in passage of X-Rays and has no impact on the MRI signal (unlike the 40% MRI signal attenuation from carbon fibre), whilst also retaining a flexural modulus up to 71% of that of carbon fibre. These results demonstrate that natural fibre composites produced using such materials provide desirable properties for use in patient support and positioning devices for multi-modal imaging, without the need to significantly compromise on the strength of the material
Leg disorders in broiler chickens : prevalence, risk factors and prevention
Broiler (meat) chickens have been subjected to intense genetic selection. In the past 50 years, broiler growth rates have increased
by over 300% (from 25 g per day to 100 g per day). There is growing societal concern that many broiler chickens have impaired
locomotion or are even unable to walk. Here we present the results of a comprehensive survey of commercial flocks which
quantifies the risk factors for poor locomotion in broiler chickens.We assessed the walking ability of 51,000 birds, representing 4.8
million birds within 176 flocks.We also obtained information on approximately 150 different management factors associated with
each flock. At a mean age of 40 days, over 27.6% of birds in our study showed poor locomotion and 3.3% were almost unable to
walk. The high prevalence of poor locomotion occurred despite culling policies designed to remove severely lame birds from
flocks. We show that the primary risk factors associated with impaired locomotion and poor leg health are those specifically
associated with rate of growth. Factors significantly associated with high gait score included the age of the bird (older birds), visit
(second visit to same flock), bird genotype, not feeding whole wheat, a shorter dark period during the day, higher stocking density
at the time of assessment, no use of antibiotic, and the use of intact feed pellets. The welfare implications are profound. Worldwide
approximately 261010 broilers are reared within similar husbandry systems.We identify a range of management factors that could
be altered to reduce leg health problems, but implementation of these changes would be likely to reduce growth rate and
production. A debate on the sustainability of current practice in the production of this important food source is required
Improving the delivery of care for patients with diabetes through understanding optimised team work and organisation in primary care
Peer reviewedPublisher PD
A Regularized Graph Layout Framework for Dynamic Network Visualization
Many real-world networks, including social and information networks, are
dynamic structures that evolve over time. Such dynamic networks are typically
visualized using a sequence of static graph layouts. In addition to providing a
visual representation of the network structure at each time step, the sequence
should preserve the mental map between layouts of consecutive time steps to
allow a human to interpret the temporal evolution of the network. In this
paper, we propose a framework for dynamic network visualization in the on-line
setting where only present and past graph snapshots are available to create the
present layout. The proposed framework creates regularized graph layouts by
augmenting the cost function of a static graph layout algorithm with a grouping
penalty, which discourages nodes from deviating too far from other nodes
belonging to the same group, and a temporal penalty, which discourages large
node movements between consecutive time steps. The penalties increase the
stability of the layout sequence, thus preserving the mental map. We introduce
two dynamic layout algorithms within the proposed framework, namely dynamic
multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We
apply these algorithms on several data sets to illustrate the importance of
both grouping and temporal regularization for producing interpretable
visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material
(animations and MATLAB toolbox) available at
http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201
Glue ear, hearing loss and IQ:an association moderated by the child's home environment
BACKGROUND: Glue ear or otitis media with effusion (OME) is common in children and may be associated with hearing loss (HL). For most children it has no long lasting effects on cognitive development but it is unclear whether there are subgroups at higher risk of sequelae. OBJECTIVES: To examine the association between a score comprising the number of times a child had OME and HL (OME/HL score) in the first four/five years of life and IQ at age 4 and 8. To examine whether any association between OME/HL and IQ is moderated by socioeconomic, child or family factors. METHODS: Prospective, longitudinal cohort study: the Avon Longitudinal Study of Parents and Children (ALSPAC). 1155 children tested using tympanometry on up to nine occasions and hearing for speech (word recognition) on up to three occasions between age 8 months and 5 years. An OME/HL score was created and associations with IQ at ages 4 and 8 were examined. Potential moderators included a measure of the child's cognitive stimulation at home (HOME score). RESULTS: For the whole sample at age 4 the group with the highest 10% OME/HL scores had performance IQ 5 points lower [95% CI -9, -1] and verbal IQ 6 points lower [95% CI -10, -3] than the unaffected group. By age 8 the evidence for group differences was weak. There were significant interactions between OME/HL and the HOME score: those with high OME/HL scores and low 18 month HOME scores had lower IQ at age 4 and 8 than those with high OME/HL scores and high HOME scores. Adjusted mean differences ranged from 5 to 8 IQ points at age 4 and 8. CONCLUSIONS: The cognitive development of children from homes with lower levels of cognitive stimulation is susceptible to the effects of glue ear and hearing loss
- …