22 research outputs found

    Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6.

    Get PDF
    Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals

    Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6.

    No full text
    International audienceMotivation: Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery.Results: We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling. This approach includes structural information for CYP2D6 based on the available crystal structures and molecular dynamic simulations (MD) that we performed to take into account conformational changes of the binding site. We performed mod-eling using three learning algorithms-support vector machine, RandomForest and NaiveBayesian-and we constructed combined models based on topological information of known CYP2D6 inhibi-tors and predicted binding energies computed by docking on both X-ray and MD protein conforma-tions. In addition, we identified three MD-derived structures that are capable all together to better discriminate inhibitors and non-inhibitors compared with individual CYP2D6 conformations, thus ensuring complementary ligand profiles. Inhibition models based on classical molecular descrip-tors and predicted binding energies were able to predict CYP2D6 inhibition with an accuracy of 78% on the training set and 75% on the external validation set

    Study Protocol: Randomised controlled trial to investigate the functional significance of marginal riboflavin status in young women in the UK (RIBOFEM)

    Get PDF
    BACKGROUND: The functional significance of moderate riboflavin deficiency as it is currently assessed is not well understood. Animal and human studies have suggested a role for riboflavin in the absorption and mobilisation of iron and as such may be important in maintaining haematological status. Recent National Diet and Nutrition Surveys in the United Kingdom have shown that young women in particular are at risk of moderate riboflavin deficiency and low iron status. METHODS/DESIGN: A randomised placebo controlled intervention trial was conducted to investigate the effect of riboflavin supplementation on various measures of haematological status in a group of moderately riboflavin deficient young women aged 19 to 25 years. Women who were low milk consumers were initially screened for riboflavin status as assessed by the erythrocyte glutathione reductase activation coefficient assay (EGRAC). One hundred and twenty three women with EGRAC values >1.40 were randomised to receive 2 mg, 4 mg riboflavin or placebo for 8 weeks. In addition 36 of these women were randomly allocated to an iron bioavailability study to investigate the effect of the intervention on the absorption or utilisation of iron using an established red cell incorporation technique. DISCUSSION: One hundred and nineteen women completed the intervention study, of whom 36 completed the bioavailability arm. Compliance was 96 ± 6% (mean ± SD). The most effective recruitment strategy for this gender and age group was e-communication (e-mail and website). The results of this study will clarify the functional significance of the current biochemical deficiency threshold for riboflavin status and will inform a re-evaluation of this biochemical threshold
    corecore