378 research outputs found
Living on the edge: utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges
Context: In agricultural landscapes, small woodland patches can be important wildlife refuges. Their value in maintaining biodiversity may, however, be compromised by isolation, and so knowledge about the role of habitat structure is vital to understand the drivers of diversity. This study examined how avian diversity and abundance were related to habitat structure in four small woods in an agricultural landscape in eastern England. Objectives: The aims were to examine the edge effect on bird diversity and abundance, and the contributory role of vegetation structure. Specifically: what is the role of vegetation structure on edge effects, and which edge structures support the greatest bird diversity? Methods: Annual breeding bird census data for 28 species were combined with airborne lidar data in linear mixed models fitted separately at (i) the whole wood level, and (ii) for the woodland edges only. Results: Despite relatively small woodland areas (4.9–9.4 ha), bird diversity increased significantly towards the edges, being driven in part by vegetation structure. At the whole woods level, diversity was positively associated with increased vegetation above 0.5 m and especially with increasing vegetation density in the understorey layer, which was more abundant at the woodland edges. Diversity along the edges was largely driven by the density of vegetation below 4 m. Conclusions: The results demonstrate that bird diversity was maximised by a diverse vegetation structure across the wood and especially a dense understorey along the edge. These findings can assist bird conservation by guiding habitat management of remaining woodland patches
The Evolution of Functionally Redundant Species; Evidence from Beetles
While species fulfill many different roles in ecosystems, it has been suggested that numerous species might actually share the same function in a near neutral way. So-far, however, it is unclear whether such functional redundancy really exists. We scrutinize this question using extensive data on the world’s 4168 species of diving beetles. We show that across the globe these animals have evolved towards a small number of regularly-spaced body sizes, and that locally co-existing species are either very similar in size or differ by at least 35%. Surprisingly, intermediate size differences (10–20%) are rare. As body-size strongly reflects functional aspects such as the food that these generalist predators can eat, these beetles thus form relatively distinct groups of functional look-a-likes. The striking global regularity of these patterns support the idea that a self-organizing process drives such species-rich groups to self-organize evolutionary into clusters where functional redundancy ensures resilience through an insurance effect
Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript
Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology
Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
Conservation genetics of the annual hemiparasitic plant Melampyrum sylvaticum (Orobanchaceae) in the UK and Scandinavia
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (F’ST = 0.892) and significantly higher amongst UK populations (F’ST = 0.949) than Scandinavian populations (F’ST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK
Virologic Failures on Initial Boosted-PI Regimen Infrequently Possess Low-Level Variants with Major PI Resistance Mutations by Ultra-Deep Sequencing
It is unknown whether HIV-positive patients experiencing virologic failure (VF) on boosted-PI (PI/r) regimens without drug resistant mutations (DRM) by standard genotyping harbor low-level PI resistant variants. CASTLE compared the efficacy of atazanavir/ritonavir (ATV/r) with lopinavir/ritonavir (LPV/r), each in combination with TVD in ARV-naïve subjects.To determine if VF on an initial PI/r-based regimen possess low-level resistant variants that may affect a subsequent PI-containing regimen.Patients experiencing VF on a Tenofovir/Emtricitabine+PI/r regimen were evaluated by ultra deep sequencing (UDS) for mutations classified/weighted by Stanford HIVdb. Samples were evaluated for variants to 0.4% levels. 36 VF subjects were evaluated by UDS; 24 had UDS for PI and RT DRMs. Of these 24, 19 (79.2%) had any DRM by UDS. The most common UDS-detected DRM were NRTI in 18 subjects: M184V/I (11), TAMs(7) & K65R(4); PI DRMs were detected in 9 subjects: M46I/V(5), F53L(2), I50V(1), D30N(1), and N88S(1). The remaining 12 subjects, all with VLs<10,000, had protease gene UDS, and 4 had low-level PI DRMs: F53L(2), L76V(1), I54S(1), G73S(1). Overall, 3/36(8.3%) subjects had DRMs identified with Stanford-HIVdb weights >12 for ATV or LPV: N88S (at 0.43% level-mutational load 1,828) in 1 subject on ATV; I50V (0.44%-mutational load 110) and L76V (0.52%-mutational load 20) in 1 subject each, both on LPV. All VF samples remained phenotypically susceptible to the treatment PI/r.Among persons experiencing VF without PI DRMs with standard genotyping on an initial PI/r regimen, low-level variants possessing major PI DRMs were present in a minority of cases, occurred in isolation, and did not result in phenotypic resistance. NRTI DRMs were detected in a high proportion of subjects. These data suggest that PIs may remain effective in subjects experiencing VF on a PI/r-based regimen when PI DRMs are not detected by standard or UDS genotyping
Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype
BACKGROUND: MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis – further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase. METHODS: cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53(-/-), MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype. RESULTS: We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene. CONCLUSIONS: Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection of those cells in MMTV-Wnt1 and MMTV-Neu transgenic mice, respectively. Alternative sources of oncogenic potential, such as a second transgenic oncogene or deficiency of a tumor suppressor gene, can obviate the selective power of those secondary mutations. These observations are consistent with the notion that somatic evolution of mouse mammary tumors is influenced by the specific nature of the inherited cancer-promoting genotype
Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment
Understanding the co-occurrence of ecologically similar species remains a puzzling issue in community ecology. The species-rich mouse lemurs (Microcebus spec.) are distributed over nearly all remaining forest areas of Madagascar with a high variability in species distribution patterns. Locally, many congeneric species pairs seem to co-occur, but only little detailed information on spatial patterns is available. Here, we present the results of an intensive capture–mark–recapture study of sympatric Microcebus berthae and M. murinus populations that revealed small-scale mutual spatial exclusion. Nearest neighbour analysis indicated a spatial aggregation in Microcebus murinus but not in M. berthae. Although the diet of both species differed in proportions of food categories, they used the same food sources and had high feeding niche overlap. Also, forest structure related to the spatial distribution of main food sources did not explain spatial segregation because parts used by each species exclusively did not differ in density of trees, dead wood and lianas. We propose that life history trade-offs that result in species aggregation and a relative increase in the strength of intra-specific over inter-specific competition best explain the observed pattern of co-occurrence of ecologically similar congeneric Microcebus species
The challenge of artemisinin resistance can only be met by eliminating Plasmodium falciparum malaria across the Greater Mekong subregion
- …
