187 research outputs found

    Admission to hospital following head injury in England: Incidence and socio-economic associations

    Get PDF
    BACKGROUND: Head injury in England is common. Evidence suggests that socio-economic factors may cause variation in incidence, and this variation may affect planning for services to meet the needs of those who have sustained a head injury. METHODS: Socio-economic data were obtained from the UK Office for National Statistics and merged with Hospital Episodes Statistics obtained from the Department of Health. All patients admitted for head injury with ICD-10 codes S00.0–S09.9 during 2001–2 and 2002–3 were included and collated at the level of the extant Health Authorities (HA) for 2002, and Primary Care Trust (PCT) for 2003. Incidence was determined, and cluster analysis and multiple regression analysis were used to look at patterns and associations. Results: 112,718 patients were admitted during 2001–2 giving a hospitalised incidence rate for England of 229 per 100,000. This rate varied across the English HA's ranging from 91–419 per 100,000. The rate remained unchanged for 2002–3 with a similar magnitude of variation across PCT's. Three clusters of HA's were identified from the 2001–2 data; those typical of London, those of the Shire counties, and those of Other Urban authorities. Socio-economic factors were found to account for a high proportion of the variance in incidence for 2001–2. The same pattern emerged for 2002–3 at the PCT level. The use of public transport for travel to work is associated with a decreased incidence and lifestyle indicators, such as the numbers of young unemployed, increase the incidence. CONCLUSION: Head injury incidence in England varies by a factor of 4.6 across HA's and PCT's. Planning head injury related services at the local level thus needs to be based on local incidence figures rather than regional or national estimates. Socio-economic factors are shown to be associated with admission, including travel to work patterns and lifestyle indicators, which suggests that incidence is amenable to policy initiatives at the macro level as well as preventive programmes targeted at key groups

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Prediction of setup times for an advanced upper limb functional electrical stimulation system

    Get PDF
    Introduction: Rehabilitation devices take time to don, and longer or unpredictable setup time impacts on usage. This paper reports on the development of a model to predict setup time for upper limb functional electrical stimulation. Methods: Participants’ level of impairment (Fugl Meyer-Upper Extremity Scale), function (Action Research Arm Test) and mental status (Mini Mental Scale) were measured. Setup times for each stage of the setup process and total setup times were recorded. A predictive model of setup time was devised using upper limb impairment and task complexity. Results: Six participants with stroke were recruited, mean age 60 (�17) years and mean time since stroke 9.8 (�9.6) years. Mean Fugl Meyer-Upper Extremity score was 31.1 (�6), Action Research Arm Test 10.4 (�7.9) and Mini Mental Scale 26.1 (�2.7). Linear regression analysis showed that upper limb impairment and task complexity most effectively predicted setup time (51% as compared with 39%) (F(2,21) ¼ 12.782, adjusted R2 ¼ 0.506; p<.05). Conclusions: A model to predict setup time based on upper limb impairment and task complexity accounted for 51% of the variation in setup time. Further studies are required to test the model in real-world settings and to identify other contributing factors

    Repetitive arm functional tasks after stroke (RAFTAS): a pilot randomised controlled trial

    Get PDF
    Background Repetitive functional task practise (RFTP) is a promising treatment to improve upper limb recovery following stroke. We report the findings of a study to determine the feasibility of a multi-centre randomised controlled trial to evaluate this intervention. Methods A pilot randomised controlled trial was conducted. Patients with new reduced upper limb function were recruited within 14 days of acute stroke from three stroke units in North East England. Participants were randomised to receive a four week upper limb RFTP therapy programme consisting of goal setting, independent activity practise, and twice weekly therapy reviews in addition to usual post stroke rehabilitation, or usual post stroke rehabilitation. The recruitment rate; adherence to the RFTP therapy programme; usual post stroke rehabilitation received; attrition rate; data quality; success of outcome assessor blinding; adverse events; and the views of study participants and therapists about the intervention were recorded. Results Fifty five eligible patients were identified, 4-6% of patients screened at each site. Twenty four patients participated in the pilot study. Two of the three study sites met the recruitment target of 1-2 participants per month. The median number of face to face therapy sessions received was 6 [IQR 3-8]. The median number of daily repetitions of activities recorded was 80 [IQR 39-80]. Data about usual post stroke rehabilitation were available for 18/24 (75%). Outcome data were available for 22/24 (92%) at one month and 20/24 (83%) at three months. Outcome assessors were unblinded to participant group allocation for 11/22 (50%) at one month and 6/20 (30%) at three months. Four adverse events were considered serious as they resulted in hospitalisation. None were related to study treatment. Feedback from patients and local NHS therapists about the RFTP programme was mainly positive. Conclusions A multi-centre randomised controlled trial to evaluate an upper limb RFTP therapy programme provided early after stroke is feasible and acceptable to patients and therapists, but there are issues which needed to be addressed when designing a Phase III study. A Phase III study will need to monitor and report not only recruitment and attrition but also adherence to the intervention, usual post stroke rehabilitation received, and outcome assessor blinding

    Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke

    Get PDF
    © 2015 Nijenhuis et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Assistive and robotic training devices are increasingly used for rehabilitation of the hemiparetic arm after stroke, although applications for the wrist and hand are trailing behind. Furthermore, applying a training device in domestic settings may enable an increased training dose of functional arm and hand training. The objective of this study was to assess the feasibility and potential clinical changes associated with a technology-supported arm and hand training system at home for patients with chronic stroke. METHODS: A dynamic wrist and hand orthosis was combined with a remotely monitored user interface with motivational gaming environment for self-administered training at home. Twenty-four chronic stroke patients with impaired arm/hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility involved training duration, usability and motivation. Clinical outcomes on arm/hand function, activity and participation were assessed before and after six weeks of training and at two-month follow-up. RESULTS: Mean System Usability Scale score was 69 % (SD 17 %), mean Intrinsic Motivation Inventory score was 5.2 (SD 0.9) points, and mean training duration per week was 105 (SD 66) minutes. Median Fugl-Meyer score improved from 37 (IQR 30) pre-training to 41 (IQR 32) post-training and was sustained at two-month follow-up (40 (IQR 32)). The Stroke Impact Scale improved from 56.3 (SD 13.2) pre-training to 60.0 (SD 13.9) post-training, with a trend at follow-up (59.8 (SD 15.2)). No significant improvements were found on the Action Research Arm Test and Motor Activity Log. CONCLUSIONS: Remotely monitored post-stroke training at home applying gaming exercises while physically supporting the wrist and hand showed to be feasible: participants were able and motivated to use the training system independently at home. Usability shows potential, although several usability issues need further attention. Upper extremity function and quality of life improved after training, although dexterity did not. These findings indicate that home-based arm and hand training with physical support from a dynamic orthosis is a feasible tool to enable self-administered practice at home. Such an approach enables practice without dependence on therapist availability, allowing an increase in training dose with respect to treatment in supervised settings. TRIAL REGISTRATION: This study has been registered at the Netherlands Trial Registry (NTR): NTR3669 .Peer reviewe

    Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: caveats from a very revealing single clinical case

    Get PDF
    Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    Study design and methods of the BoTULS trial: a randomised controlled trial to evaluate the clinical effect and cost effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A

    Get PDF
    Background Following a stroke, 55–75% of patients experience upper limb problems in the longer term. Upper limb spasticity may cause pain, deformity and reduced function, affecting mood and independence. Botulinum toxin is used increasingly to treat focal spasticity, but its impact on upper limb function after stroke is unclear. The aim of this study is to evaluate the clinical and cost effectiveness of botulinum toxin type A plus an upper limb therapy programme in the treatment of post stroke upper limb spasticity. Methods Trial design : A multi-centre open label parallel group randomised controlled trial and economic evaluation. Participants : Adults with upper limb spasticity at the shoulder, elbow, wrist or hand and reduced upper limb function due to stroke more than 1 month previously. Interventions : Botulinum toxin type A plus upper limb therapy (intervention group) or upper limb therapy alone (control group). Outcomes : Outcome assessments are undertaken at 1, 3 and 12 months. The primary outcome is upper limb function one month after study entry measured by the Action Research Arm Test (ARAT). Secondary outcomes include: spasticity (Modified Ashworth Scale); grip strength; dexterity (Nine Hole Peg Test); disability (Barthel Activities of Daily Living Index); quality of life (Stroke Impact Scale, Euroqol EQ-5D) and attainment of patient-selected goals (Canadian Occupational Performance Measure). Health and social services resource use, adverse events, use of other antispasticity treatments and patient views on the treatment will be compared. Participants are clinically reassessed at 3, 6 and 9 months to determine the need for repeat botulinum toxin type A and/or therapy. Randomisation : A web based central independent randomisation service. Blinding : Outcome assessments are undertaken by an assessor who is blinded to the randomisation group. Sample size : 332 participants provide 80% power to detect a 15% difference in treatment successes between intervention and control groups. Treatment success is defined as improvement of 3 points for those with a baseline ARAT of 0–3 and 6 points for those with ARAT of 4–56

    Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries

    Get PDF
    Critical soft tissue injuries may lead to a non-functional and insensate limb. In these cases standard reconstructive techniques will not suffice to provide a useful outcome, and solutions outside the biological arena must be considered and offered to these patients. We propose a concept which, after all reconstructive options have been exhausted, involves an elective amputation along with a bionic substitution, implementing an actuated prosthetic hand via a structured tech-neuro-rehabilitation program. Here, three patients are presented in whom this concept has been successfully applied after mutilating hand injuries. Clinical tests conducted before, during and after the procedure, evaluating both functional and psychometric parameters, document the benefits of this approach. Additionally, in one of the patients, we show the possibility of implementing a highly functional and natural control of an advanced prosthesis providing both proportional and simultaneous movements of the wrist and hand for completing tasks of daily living with substantially less compensatory movements compared to the traditional systems. It is concluded that the proposed procedure is a viable solution for re-gaining highly functional hand use following critical soft tissue injuries when existing surgical measures fail. Our results are clinically applicable and can be extended to institutions with similar resources

    Design and test of an automated version of the modified Jebsen test of hand function using Microsoft Kinect

    Get PDF
    Abstract Background The present paper describes the design and evaluation of an automated version of the Modified Jebsen Test of Hand Function (MJT) based on the Microsoft Kinect sensor. Methods The MJT was administered twice to 11 chronic stroke subjects with varying degrees of hand function deficits. The test times of the MJT were evaluated manually by a therapist using a stopwatch, and automatically using the Microsoft Kinect sensor. The ground truth times were assessed based on inspection of the video-recordings. The agreement between the methods was evaluated along with the test-retest performance. Results The results from Bland-Altman analysis showed better agreement between the ground truth times and the automatic MJT time evaluations compared to the agreement between the ground truth times and the times estimated by the therapist. The results from the test-retest performance showed that the subjects significantly improved their performance in several subtests of the MJT, indicating a practice effect. Conclusions The results from the test showed that the Kinect can be used for automating the MJT
    corecore