295 research outputs found

    Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions

    Full text link
    We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis of (e,epe,e'p) data. We find that the relativistic calculations produce smaller (e,epe,e'p) cross sections even in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic proton--nucleus scattering data. Compared to the nonrelativistic impulse approximation, this effect is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be taken into account in the nonrelativistic treatment by a proper redefinition of the effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the list of references updated. Added one appendix. This version will appear in Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints

    Measuring Cosmic Defect Correlations in Liquid Crystals

    Get PDF
    From the theory of topological defect formation proposed for the early universe, the so called Kibble mechanism, it follows that the density correlation functions of defects and anti-defects in a given system should be completely determined in terms of a single length scale ξ\xi, the relevant domain size. Thus, when lengths are expressed in units of ξ\xi, these distributions should show universal behavior, depending only on the symmetry of the order parameter, and space dimensions. We have verified this prediction by analyzing the distributions of defects/anti-defects formed in the isotropic-nematic phase transition in a thin layer of nematic liquid crystals. Our experimental results confirm this prediction and are in reasonable agreement with the results of numerical simulations.Comment: 15 pages, 4 figures, minor changes, few new references adde

    Search for the Rare Decay KL --> pi0 ee

    Full text link
    The KTeV/E799 experiment at Fermilab has searched for the rare kaon decay KL--> pi0ee. This mode is expected to have a significant CP violating component. The measurement of its branching ratio could support the Standard Model or could indicate the existence of new physics. This letter reports new results from the 1999-2000 data set. One event is observed with an expected background at 0.99 +/- 0.35 events. We set a limit on the branching ratio of 3.5 x 10^(-10) at the 90% confidence level. Combining the results with the dataset taken in 1997 yields the final KTeV result: BR(KL --> pi0 ee) < 2.8 x 10^(-10) at 90% CL.Comment: 4 pages, three figure

    Stochastic Production Of Kink-Antikink Pairs In The Presence Of An Oscillating Background

    Get PDF
    We numerically investigate the production of kink-antikink pairs in a (1+1)(1+1) dimensional ϕ4\phi^4 field theory subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence of the kink-density on the temperature of the heat bath, the amplitude of the oscillating background and value of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink production occurs even though the system always remains in the broken symmetry phase.Comment: Revtex, 21 pages including 7 figures; more references adde

    Isospin influences on particle emission and critical phenomenon in nuclear dissociation

    Full text link
    Features of particle emission and critical point behavior are investigated as functions of the isospin of disassembling sources and temperature at a moderate freeze-out density for medium-size Xe isotopes in the framework of isospin dependent lattice gas model. Multiplicities of emitted light particles, isotopic and isobaric ratios of light particles show the strong dependence on the isospin of the dissociation source, but double ratios of light isotope pairs and the critical temperature determined by the extreme values of some critical observables are insensitive to the isospin of the systems. Values of the power law parameter of cluster mass distribution, mean multiplicity of intermediate mass fragments (IMFIMF), information entropy (HH) and Campi's second moment (S2S_2) also show a minor dependence on the isospin of Xe isotopes at the critical point. In addition, the slopes of the average multiplicites of the neutrons (NnN_n), protons (NpN_p), charged particles (NCPN_{CP}), and IMFs (NimfN_{imf}), slopes of the largest fragment mass number (AmaxA_{max}), and the excitation energy per nucleon of the disassembling source (E/AE^*/A) to temperature are investigated as well as variances of the distributions of NnN_n, NpN_p, NCPN_{CP}, NIMFN_{IMF}, AmaxA_{max} and E/AE^*/A. It is found that they can be taken as additional judgements to the critical phenomena.Comment: 9 Pages, 8 figure

    Nonequilibrium Evolution of Correlation Functions: A Canonical Approach

    Get PDF
    We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space translation only by using a canonical approach based on the recently developed Liouville-von Neumann formalism. The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for the quantum mechanical analog of the ϕ4\phi^{4} model. The technique involves representing the Hamiltonian in a Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any desired order. The correlation functions for the field theory are then investigated in the Hartree approximation and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up to O(λ2){\cal O}(\lambda^2). These correlation functions take into account next-to-leading and next-to-next-to-leading order effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations for the equal-time, connected correlation functions beyond the leading order. These equations are derived by including the connected 4-point functions in the hierarchy. The resulting coupled set of equations form a part of infinite hierarchy of coupled equations relating the various connected n-point functions. The connection with other approaches based on the path integral formalism is established and the physical implications of the set of equations are discussed with particular emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with non-equilibrium evolution beyond Hartree approx. based on the LvN formalism, has been adde

    Geological controls on the geometry of incised-valley fills: Insights from a global dataset of late-Quaternary examples

    Get PDF
    Incised valleys that develop due to relative sea-level change are common features of continental shelves and coastal plains. Assessment of the factors that control the geometry of incised-valley fills has hitherto largely relied on conceptual, experimental or numerical models, else has been grounded on case studies of individual depositional systems. Here, a database-driven statistical analysis of 151 late-Quaternary incised-valley fills has been performed, the aim being to investigate the geological controls on their geometry. Results of this analysis have been interpreted with consideration of the role of different processes in determining the geometry of incised-valley fills through their effect on the degree and rate of river incision, and on river size and mobility. The studied incised-valley fills developed along active margins are thicker and wider, on average, than those along passive margins, suggesting that tectonic setting exerts a control on the geometry of incised-valley fills, likely through effects on relative sea-level change and river behaviour, and in relation to distinct characteristics of basin physiography, water discharge and modes of sediment delivery. Valley-fill geometry is positively correlated with the associated drainage-basin size, confirming the dominant role of water discharge. Climate is also inferred to exert a potential control on valley-fill dimensions, possibly through modulations of temperature, peak precipitation, vegetation and permafrost, which would in turn affect water discharge, rates of sediment supply and valley-margin stability. Shelves with slope breaks that are currently deeper than 120 m contain incised-valley fills that are thicker and wider, on average, than those hosted on shelves with breaks shallower than 120 m. No correlation exists between valley-fill thickness and present-day coastal-prism convexity, which is measured as the difference in gradient between lower coastal plains and inner shelves. These findings challenge some concepts embedded in sequence stratigraphic thinking, and have significant implications for analysis and improved understanding of source-to-sink sediment route-ways, and for attempting predictions of the occurrence and characteristics of hydrocarbon reservoirs

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
    corecore