282 research outputs found
Inoculum selection influences the biochemical methane potential of agro-industrial substrates
Obtaining a reliable estimation of the methane potential of organic waste streams in anaerobic digestion, for which a biochemical methane potential (BMP) test is often used, is of high importance. Standardization of this BMP test is required to ensure inter-laboratory repeatability and accuracy of the BMP results. Therefore, guidelines were set out; yet, these do not provide sufficient information concerning origin of and the microbial community in the test inoculum. Here, the specific contribution of the methanogenic community on the BMP test results was evaluated. The biomethane potential of four different substrates (molasses, bio-refinery waste, liquid manure and high-rate activated sludge) was determined by means of four different inocula from full-scale anaerobic digestion plants. A significant effect of the selected inoculum on the BMP result was observed for two out of four substrates. This inoculum effect could be attributed to the abundance of methanogens and a potential inhibiting effect in the inoculum itself, demonstrating the importance of inoculum selection for BMP testing. We recommend the application of granular sludge as an inoculum, because of its higher methanogenic abundance and activity, and protection from bulk solutions, compared with other inocula
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Molecular and Biological Characterization of the Murine Leukotriene B4 Receptor Expressed on Eosinophils
The movement of leukocytes into tissues is regulated by the local production of chemical mediators collectively referred to as chemoattractants. Although chemoattractants constitute a diverse array of molecules, including proteins, peptides, and lipids, they all appear to signal leukocytes through a related family of seven transmembrane–spanning G protein–coupled receptors. The eosinophil is a potent proinflammatory cell that is attracted into tissues during allergic inflammation, parasitic infection, and certain malignancies. Since the molecular mechanisms controlling eosinophil recruitment are incompletely understood, we performed a degenerate polymerase chain reaction on cDNA isolated from murine eosinophils to identify novel chemoattractant receptors. We report the isolation of a cDNA that encodes a 351–amino acid glycoprotein that is 78% identical to a human gene that has been reported to be a purinoceptor (P2Y7) and a leukotriene B4 (LTB4) receptor (BLTR). Chinese hamster ovary (CHO) cells transfected with this cDNA specifically bound [3H]LTB4 with a dissociation constant of 0.6 ± 0.1 nM. Furthermore, LTB4 induced a dose-dependent intracellular calcium flux in transfected CHO cells. In contrast, [35S]dATP did not specifically bind to these transfectants. This mRNA was expressed at high levels in interleukin 5–exposed eosinophils, elicited peritoneal macrophages and neutrophils, and to a lesser extent interferon γ stimulated macrophages. Low levels of expression were detected in the lung, lymph node, and spleen of unchallenged mice. Western blot analysis detected the mBLTR protein in murine eosinophils and alveolar macrophages as well as human eosinophils. In addition, elevated levels of mBLTR mRNA were found in the lungs of mice in a murine model of allergic pulmonary inflammation in a time course consistent with the influx of eosinophils. Our findings indicate that this murine receptor is an LTB4 receptor that is highly expressed on activated leukocytes, including eosinophils, and may play an important role in mediating eosinophil recruitment into inflammatory foci
Human Placental Cytotrophoblasts Attract Monocytes and Cd56bright Natural Killer Cells via the Actions of Monocyte Inflammatory Protein 1α
During human pregnancy, the specialized epithelial cells of the placenta (cytotrophoblasts) come into direct contact with immune cells in several locations. In the fetal compartment of the placenta, cytotrophoblast stem cells lie adjacent to macrophages (Hofbauer cells) that reside within the chorionic villus stroma. At sites of placental attachment to the mother, invasive cytotrophoblasts encounter specialized maternal natural killer (NK) cells (CD56bright), macrophages, and T cells that accumulate within the uterine wall during pregnancy. Here we tested the hypothesis that fetal cytotrophoblasts can direct the migration of these maternal immune cells. First, we assayed the chemotactic activity of cytotrophoblast conditioned medium samples, using human peripheral blood mononuclear cells as targets. The placental samples preferentially attracted NK cells (both CD56dim and CD56bright), monocytes, and T cells, suggesting that our hypothesis was correct. A screen to identify chemokine activity through the induction of a Ca2+ flux in cells transfected with individual chemokine receptors suggested that cytotrophoblasts secreted monocyte inflammatory protein (MIP)-1α. This was confirmed by localizing the corresponding mRNA and protein, both in vitro and in vivo. MIP-1α protein in conditioned medium was further characterized by immunoblotting and enzyme-linked immunosorbent assay. Immunodepletion of MIP-1α from cytotrophoblast conditioned medium showed that this chemokine was responsible for a significant portion of the induced monocyte and CD56bright NK cell chemotax-is. These data suggest the specific conclusion that cytotrophoblasts can attract monocytes and CD56bright NK cells by producing MIP-1α and the more general hypothesis that these cells may organize and act on leukocytes at the maternal–fetal interface
The G Protein-Coupled Receptor GPR17: Overview and Update
The GPR17 receptor is a G protein-coupled receptor (GPCR) that seems to respond to two unrelated families of endogenous ligands: nucleotide sugars (UDP, UDP-galactose, and UDP-glucose) and cysteinyl leukotrienes (LTD4 , LTC4 , and LTE4 ), with significant affinity at micromolar and nanomolar concentrations, respectively. This receptor has a broad distribution at the level of the central nervous system (CNS) and is found in neurons and in a subset of oligodendrocyte precursor cells (OPCs). Unfortunately, disparate results emerging from different laboratories have resulted in a lack of clarity with regard to the role of GPR17-targeting ligands in OPC differentiation and in myelination. GPR17 is also highly expressed in organs typically undergoing ischemic damage and has various roles in specific phases of adaptations that follow a stroke. Under such conditions, GPR17 plays a crucial role; in fact, its inhibition decreases the progression of ischemic damage. This review summarizes some important features of this receptor that could be a novel therapeutic target for the treatment of demyelinating diseases and for repairing traumatic injury
CCR5Δ32 Genotype Leads to a Th2 Type Directed Immune Response in ESRD Patients
BACKGROUND: In patients with end stage renal disease (ESRD) we observed protection from inflammation-associated mortality in CCR5Δ32 carriers, leading to CCR5 deficiency, suggesting impact of CCR5Δ32 on inflammatory processes. Animal studies have shown that CCR5 deficiency is associated with a more pronounced Th2 type immune response, suggesting that in human CCR5Δ32 carriers the immune response may be more Th2 type directed. So, in the present study we determined the Th1-Th2 type directed immune response in ESRD patients carrying and not carrying the CCR5Δ32 genetic variant after stimulation. METHODOLOGY/PRINCIPAL FINDINGS: We tested this hypothesis by determining the levels of IFN-γ and IL-4 and the distribution of Th1, Th2 and Th17 directed circulating CD4+ and CD8+ T cells and regulatory T cells (Tregs) after stimulation in ESRD patients with (n = 10) and without (n = 9) the CCR5Δ32 genotype. The extracellular levels of IFN-γ and IL-4 did not differ between CCR5Δ32 carriers and non carriers. However, based on their intracellular cytokine profile the percentages IL-4 secreting CD4+ and CD8+ T cells carrying the CCR5Δ32 genotype were significantly increased (p = 0.02, respectively p = 0.02) compared to non carriers, indicating a more Th2 type directed response. Based on their intracellular cytokine profile the percentages IFN-γ and IL-17 secreting T cells did not differ between carriers and non-carriers nor did the percentage Tregs, indicating that the Th1, Th17 and T regulatory response was not affected by the CCR5Δ32 genotype. CONCLUSIONS/SIGNIFICANCE: This first, functional human study shows a more pronounced Th2 type immune response in CCR5Δ32 carriers compared to non carriers. These differences may be involved in the previously observed protection from inflammation-associated mortality in ESRD patients carrying CCR5Δ32
- …