82 research outputs found

    Communication and mutual resource exchange in north Florida hermit crabs

    Full text link
    The patterns of shell exchange in three species of hermit crabs which overlap in distribution and shell use were observed in the laboratory. Crabs showed no tendency to initiate more exchanges with conspecifics as compared with nonconspecific individuals and there were no specific size dominance effects. Lack of common communicatory patterns between Clibararius vittatus and Pagurus pollicaris was correlated with minimal actual exchange, while Pagurus impressus exchanged with both species and executed patterns in common with both. The pattern of shell exchanges and preferences indicated that, in some cases, both individuals may gain in interspecific exchanges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46904/1/265_2004_Article_BF00569198.pd

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Sabkha dolomite as an archive for the magnesium isotope composition of seawater

    No full text
    Recent studies have uncovered the potential of Mg isotopes (δ26Mg) for studying past ocean chemistry, but records of such data are still scarce. Dolomite has been suggested as a promising archive for δ26Mg of seawater. However, its enigmatic formation mechanism and the difficulty in precipitating dolomite in the laboratory at surface temperatures decrease confidence in the interpretation of δ26Mg values from the rock record. To evaluate factors determining the δ26Mg of dolomite, we studied pore water and sediment from Dohat Faishakh Sabkha, Qatar—one of the rare environments where dolomite is currently forming. The δ26Mg values of the dolomite (–2.56‰ to –1.46‰) are lower than that of seawater (–0.83‰), whereas δ26Mg values of pore water (–0.71‰ to –0.14‰) are higher. The isotope fractionation accompanying dolomite formation is generally in accordance with an empirical fractionation from the literature, extrapolated to the sabkha’s temperature (–1.84‰ to –1.51‰). The results suggest that evaporated seawater is the sole source of Mg, and isotopically light dolomite is the major sink, so that the δ26Mg of the dolomite-forming pore water is equal to or greater than that of seawater. Thus, provided that the lowest δ26Mg value among several dolomite samples is used, and the formation temperature is known, similar sabkha-type dolomites can be utilized as an archive for δ26Mg values of ancient seawater. © 2020 Geological Society of AmericaISSN:0091-7613ISSN:1943-268

    New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation

    No full text
    The oceanic magnesium budget is important to our understanding of Earth’s carbon cycle, because similar processes control both (e.g., weathering, volcanism, and carbonate precipitation). However, dolomite sedimentation and low-temperature hydrothermal circulation remain enigmatic oceanic Mg sinks. In recent years, magnesium isotopes (δ26Mg) have provided new constraints on the Mg cycle, but the lack of data for the low-temperature hydrothermal isotope fractionation has hindered this approach. Here we present new δ26Mg data for low-temperature hydrothermal fluids, demonstrating preferential 26Mg incorporation into the oceanic crust, on average by εsolid-fluid ≈ 1.6‰. These new data, along with the constant seawater δ26Mg over the past ~20 Myr, require a significant dolomitic sink (estimated to be 1.5–2.9 Tmol yr−1; 40–60% of the oceanic Mg outputs). This estimate argues strongly against the conventional view that dolomite formation has been negligible in the Neogene and points to the existence of significant hidden dolomite formation.ISSN:2041-172

    Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: Implications for its origin

    No full text
    Precambrian banded iron formations (BIFs) represent an important source of mineable iron, as well as an archive recording secular changes in the chemistry of the Earth’s early oceans. Here we report petrographic and geochemical characteristics of unweathered drill core samples from the Bikoula BIF, a virtually uncharacterized oxide facies iron formation, hosted in the Mesoarchean Ntem complex, southern Cameroon. The BIF is cross-cut with syenitic veins. The entire succession is highly deformed and metamorphosed under granulite facies conditions. The BIF is characterized by alternating micro-bands of magnetite, quartz and pyroxene. Sulfides (pyrite, pyrrhotite, and chalcopyrite), oligoclase, ferro-pargasite, biotite and ilmenite occur as minor phases. The presence of pyroxene, ferro-pargasite and oligoclase, relatively high contents of major elements such as Al2O3 (0.76–7.52 wt.%), CaO (1.95–4.90 wt.%), MgO (3.78–5.59 wt.%), as well as positive correlations among Al2O3, TiO2, HFSEs, LILEs and transition metals (V, Cr, Ni, Cu and Zn), suggest that the BIF protolith included a significant amount of clastic material. Several samples have preserved seawater-like PAAS-normalized REE-Y patterns, including LREE depletion, and positive La and Y anomalies. Positive Eu anomalies observed in some of the analyzed samples indicate influx of hydrothermal fluids (possibly including Fe and Si) within the basin where the BIF precipitated. However, few samples show unusual negative Eu anomalies that likely result from a large proportion of clastic contamination. The lack of Ce anomalies suggests that the Bikoula BIF was deposited in a basin that was (at least partly) anoxic or suboxic, where it was possible to transport and concentrate dissolved Fe2+
    • …
    corecore