592 research outputs found

    Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. :III. Stellar masses, star formation rates, and metallicities at z > 1

    Get PDF
    (Abridged) Long gamma-ray bursts (LGRB) have been suggested as promising tracers of star formation owing to their association with the core-collapse of massive stars. The goal of this work is to characterise the population of host galaxies of LGRBs at 1 < z < 2, investigate the conditions in which LGRBs form at these redshifts and assess their use as tracers of star formation. We perform a spectro-photometric analysis to determine the stellar mass, star formation rate, specific star formation rate and metallicity of the complete, unbiased host galaxy sample of the Swift/BAT6 LGRB sample at 1 < z < 2. We compare the distribution of these properties to the ones of typical star-forming galaxies from the MOSDEF and COSMOS2015 Ultra Deep surveys, within the same redshift range. We find that, similarly to z < 1, LGRBs do not directly trace star formation at 1 < z < 2, and they tend to avoid high-mass, high-metallicity host galaxies. We also find evidence for an enhanced fraction of starbursts among the LGRB host sample with respect to the star-forming population of galaxies. Nonetheless we demonstrate that the driving factor ruling the LGRB efficiency is metallicity. The LGRB host distributions can be reconciled with the ones expected from galaxy surveys by imposing a metallicity upper limit of 12+logOH ~ 8.55. Metallicity rules the LGRB production efficiency, which is stifled at Z > 0.7 Zsun. Under this hypothesis we can expect LGRBs to trace star formation at z > 3, once the bulk of the star forming galaxy population are characterised by metallicities below this limit. The moderately high metallicity threshold found is in agreement with the conditions necessary to rapidly produce a fast-rotating Wolf-Rayet star a in close binary system, and could be accommodated by single star models under chemically homogeneous mixing with very rapid rotation and weak magnetic coupling.Comment: 19 pages, 17 figures, accepted for publication in Astronomy & Astrophysic

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding

    Transiting Exoplanets with JWST

    Full text link
    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet measurements, and give several examples of potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade: JWST and Concurrent Facilities, Astrophysics & Space Science Library, Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht (2008)." The original publication will be available at http://www.springerlink.co

    Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia

    Get PDF
    Patients suffering from Parkinson’s disease display a number of symptoms such a resting tremor, bradykinesia, etc. Bradykinesia is the hallmark and most disabling symptom of Parkinson’s disease (PD). Herein, a basal ganglia-cortico-spinal circuit for the control of voluntary arm movements in PD bradykinesia is extended by incorporating DAergic innervation of cells in the cortical and spinal components of the circuit. The resultant model simulates successfully several of the main reported effects of DA depletion on neuronal, electromyographic and movement parameters of PD bradykinesia

    Optimal estimation of qubit states with continuous time measurements

    Get PDF
    We propose an adaptive, two steps strategy, for the estimation of mixed qubit states. We show that the strategy is optimal in a local minimax sense for the trace norm distance as well as other locally quadratic figures of merit. Local minimax optimality means that given nn identical qubits, there exists no estimator which can perform better than the proposed estimator on a neighborhood of size n1/2n^{-1/2} of an arbitrary state. In particular, it is asymptotically Bayesian optimal for a large class of prior distributions. We present a physical implementation of the optimal estimation strategy based on continuous time measurements in a field that couples with the qubits. The crucial ingredient of the result is the concept of local asymptotic normality (or LAN) for qubits. This means that, for large nn, the statistical model described by nn identically prepared qubits is locally equivalent to a model with only a classical Gaussian distribution and a Gaussian state of a quantum harmonic oscillator. The term `local' refers to a shrinking neighborhood around a fixed state ρ0\rho_{0}. An essential result is that the neighborhood radius can be chosen arbitrarily close to n1/4n^{-1/4}. This allows us to use a two steps procedure by which we first localize the state within a smaller neighborhood of radius n1/2+ϵn^{-1/2+\epsilon}, and then use LAN to perform optimal estimation.Comment: 32 pages, 3 figures, to appear in Commun. Math. Phy

    Quantum optics in the phase space - A tutorial on Gaussian states

    Full text link
    In this tutorial, we introduce the basic concepts and mathematical tools needed for phase-space description of a very common class of states, whose phase properties are described by Gaussian Wigner functions: the Gaussian states. In particular, we address their manipulation, evolution and characterization in view of their application to quantum information.Comment: Tutorial. 23 pages, 1 figure. Updated version accepted for publication in EPJ - ST devoted to the memory of Federico Casagrand

    Faithful Squashed Entanglement

    Get PDF
    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, strictly positive if and only if the state is entangled. We derive the bound on squashed entanglement from a bound on quantum conditional mutual information, which is used to define squashed entanglement and corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured by the one-way LOCC norm, an operationally-motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and one-directional classical communication between the parties. A similar result for the Frobenius or Euclidean norm follows immediately. The result has two applications in complexity theory. The first is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in one-way LOCC or Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations thereby providing a new characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published version, claims have been weakened from the LOCC norm to the one-way LOCC nor

    Extended Human Papillomavirus Genotyping to Predict Progression to High-Grade Cervical Precancer: A Prospective Cohort Study in the Southeastern United States

    Get PDF
    Background: High-risk human papillomavirus (hrHPV) testing (HPV16; else HPV18/45; else HPV31/33/35/52/58; else HPV39/ is utilized in primary cervical cancer screening, generally along with 51/56/59/68). cytology, to triage abnormalities to colposcopy. Most screening-Results: At enrollment, median participant age was 30.1 years; based hrHPV testing involves pooled detection of any hrHPV or of most (63%) were hrHPV-positive. Over follow-up, 24 participants HPV16/18. Cervical neoplasia progression risks based on extended progressed to CIN2þ (7.0%). CIN2þ IR among hrHPV-positive hrHPV genotyping—particularly non-16/18 hrHPV types—are not participants was 3.4/1,000 person-months. CIN2þ IRs were highest well characterized. HPV genotype-specific incidence of high-grade for HPV16 (8.3), HPV33 (7.8), and HPV58 (4.9). Five-year CIN2þ cervical intraepithelial neoplasia or more severe (CIN2þ) following risk was higher for HPV16 (0.34) compared with HPV18/45 (0.12), an abnormal screening result was examined. HPV31/33/35/52/58 (0.12), and HPV39/51/56/59/68 (0.16) (P ¼ 0.05). Methods: We assessed a US-based prospective, multiracial, Conclusions: Non-16/18 hrHPV types are associated with difclinical cohort of 343 colposcopy patients with normal histology ferential CIN2þ progression rates. HPV16, 33, and 58 exhibited the (n ¼ 226) or CIN1 (n ¼ 117). Baseline cervical samples underwent highest rates over 5 years. HPV risk groups warrant further invesHPV DNA genotyping, and participants were followed up to 5 years. tigation in diverse US populations. Genotype-specific CIN2þ incidence rates (IR) were estimated with Impact: These novel data assessing extended HPV genotyping in accelerated failure time models. Five-year CIN2þ risks were estia diverse clinical cohort can inform future directions to improve mated nonparametrically for hierarchical hrHPV risk groups screening practices in the general population

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication
    corecore