20 research outputs found

    Thermal age, cytosine deamination and the veracity of 8,000 year old wheat DNA from sediments

    Get PDF
    YesRecently, the finding of 8,000 year old wheat DNA from submerged marine sediments (1) was challenged on the basis of a lack of signal of cytosine deamination relative to three other data sets generated from young samples of herbarium and museum specimens, and a 7,000 year old human skeleton preserved in a cave environment (2). The study used a new approach for low coverage data sets to which tools such as mapDamage cannot be applied to infer chemical damage patterns. Here we show from the analysis of 148 palaeogenomic data sets that the rate of cytosine deamination is a thermally correlated process, and that organellar generally shows higher rates of deamination than nuclear DNA in comparable environments. We categorize four clusters of deamination rates (alpha,beta,gamma,epsilon) that are associated with cold stable environments, cool but thermally fluctuating environments, and progressively warmer environments. These correlations show that the expected level of deamination in the sedaDNA would be extremely low. The low coverage approach to detect DNA damage by Weiss et al. (2) fails to identify damage samples from the cold class of deamination rates. Finally, different enzymes used in library preparation processes exhibit varying capability in reporting cytosine deamination damage in the 5 prime region of fragments. The PCR enzyme used in the sedaDNA study would not have had the capability to report 5 prime cytosine deamination, as they do not read over uracil residues, and signatures of damage would have better been sought at the 3 prime end. The 8,000 year old sedaDNA matches both the thermal age prediction of fragmentation, and the expected level of cytosine deamination for the preservation environment. Given these facts and the use of rigorous controls these data meet the criteria of authentic ancient DNA to an extremely stringent level

    The evolutionary history of wild, domesticated, and feral brassica oleracea (Brassicaceae)

    Get PDF
    Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil Genetic-archaeological evidences about the origin of common bean in Brazil

    Get PDF
    Neste trabalho se discute a origem do feijão comum, Phaseolus vulgaris L. Amostras modernas e arqueológicas foram analisadas geneticamente, utilizando-se seqüências da proteína faseolina (Phs). A amostra arqueológica foi encontrada em uma caverna no Norte de Minas Gerais. Os resultados evidenciam que esta amostra se relaciona mais com as variedades de feijão encontrados no Norte da América do Sul e México, o que sugere influências culturais remotas entre aquelas regiões e Minas Gerais. Além disto, deve ter havido um único evento de domesticação, com local provável entre o Norte da América do Sul e o México.<br>This work discusses the origin of common bean, Phaseolus vulgaris L. Modern and archaeological samples were genetically analyzed, using sequences of phaseolin (Phs). The archaeological sample was found in a cave in northern Minas Gerais State. Our results showed that this sample is close to those found in Northern South America and Mexico, indicating cultural influences in the past, between those regions and Minas Gerais. Besides, there must have been a single domestication event, probably between Northern South America and Mexico

    Response to Comment on "Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago"

    No full text
    NoBennett questions the rigor of the dating of our sample from which sedimentary ancient DNA was obtained and the reliability of the taxonomic identification of wheat. We present a further radiocarbon date from S308 that confirms the lateral consistency of the palaeosol age. The suggestion of taxonomic false positives in our data illustrates a misinterpretation of the phylogenetic intersection analysis

    Microsatellite typing of ancient maize: insights into the history of agriculture in southern South America

    No full text
    Archaeological maize specimens from Andean sites of southern South America, dating from 400 to 1400 years before present, were tested for the presence of ancient DNA and three microsatellite loci were typed in the specimens that gave positive results. Genotypes were also obtained for 146 individuals corresponding to modern landraces currently cultivated in the same areas and for 21 plants from Argentinian lowland races. Sequence analysis of cloned ancient DNA products revealed a high incidence of substitutions appearing in only one clone, with transitions prevalent. In the archaeological specimens, there was no evidence of polymorphism at any one of the three microsatellite loci: each exhibited a single allelic variant, identical to the most frequent allele found in contemporary populations belonging to races Amarillo Chico, Amarillo Grande, Blanco and Altiplano. Affiliation between ancient specimens and a set of races from the Andean complex was further supported by assignment tests. The striking genetic uniformity displayed by the ancient specimens and their close relationship with the Andean complex suggest that the latter gene pool has predominated in the western regions of southern South America for at least the past 1400 years. The results support hypotheses suggesting that maize cultivation initially spread into South America via a highland route, rather than through the lowlands
    corecore