13 research outputs found

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Get PDF
    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208^{208}Tl and 214^{214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m2m^2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208^{208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A\mathcal{A}(208^{208}Tl) == 1.5 μ\muBq/m2^2 is reported here. Given this level of background, a larger BiPo detector having 12 m2^2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A\mathcal{A}(208^{208}Tl) << 2 μ\muBq/kg (90% C.L.) with a six month measurement.Comment: 24 pages, submitted to N.I.M.

    Search for flavor-changing non-standard neutrino interactions by MINOS

    No full text
    We report new constraints on flavor-changing non-standard neutrino interactions from the MINOS experiment, in which neutrino versus antineutrino interactions can be distinguished on an event-by-event basis. We analyzed a combined set of beam neutrino and antineutrino data from the well-understood NuMI beam, and found no evidence for deviations from standard neutrino mixing. The observed energy spectra constrain the non-standard neutrino interactions parameter to the range -0.20&amp;lt;εμτ&amp;lt;0.07(90%C.L.). © 2013 American Physical Society

    Measurements of atmospheric neutrinos and antineutrinos in the MINOS far detector

    No full text
    This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current ν μ and ν ̄μ interactions, and 701 contained-vertex showers, composed mainly of charged-current ν e and ν ̄e interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of ν μ and ν ̄μ events. The observed ratio of ν ̄μ to ν μ events is compared with the MonteCarlo (MC) simulation, giving a double ratio of Rν̄/νdata/ Rν̄/νMC=1.03±0.08(stat)±0.08(syst). The ν μ and ν ̄μ data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Δm2|=(1.9±0.4)×10 -3eV2 and sin22θ&amp;gt;0.86. The fit is extended to incorporate separate ν μ and ν ̄μ oscillation parameters, returning 90% confidence limits of |Δm2|-|Δm ̄2|=0.6- 0.8+2.4×10 -3eV2 on the difference between the squared-mass splittings for neutrinos and antineutrinos. © 2012 American Physical Society

    Risk, health and welfare. Policies, strategies and practice.

    Get PDF
    This text sets the practice of health and welfare professionals within a broad context. It examines the alternative ways in which risk can be defined, the influence of risk on the development of social policy, its impact on welfare agency activities and on professional decision making. The book provides a perspective on the definition, assessment and management of risk. It explores how students learn about risk, how education providers equip future professionals to deal with risk issues in practice and whether employing agencies provide supportive or blaming structure

    Investigation of double beta decay of 100Mo to excited states of 100Ru

    No full text
    Double beta decay of 100Mo to the excited states of daughter nuclei has been studied using a 600 cm3 low-background HPGe detector and an external source consisting of 2588 g of 97.5% enriched metallic 100Mo, which was formerly inside the NEMO-3 detector and used for the NEMO-3 measurements of 100Mo. The half-life for the two-neutrino double beta decay of 100Mo to the excited View the MathML source state in 100Ru is measured to be T1/2=[7.5±0.6(stat)±0.6(syst)]⋅1020 yr. For other (0ν+2ν) transitions to the View the MathML source, View the MathML source, View the MathML source, View the MathML source and View the MathML source levels in 100Ru, limits are obtained at the level of ∼(0.25–1.1)⋅1022 yr

    The BiPo-3 detector

    Get PDF
    The BiPo-3 detector is a low radioactive detector dedicated to measuring ultra-low natural contaminations of 208 Tl and 214 Bi in thin materials, initially developed to measure the radiopurity of the double β decay source foils of the SuperNEMO experiment at the μBq/kg level. The BiPo-3 technique consists in installing the foil of interest between two thin ultra-radiopure scintillators coupled to low radioactive photomultipliers. The design and performances of the detector are presented

    Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector

    No full text
    Using 9.4 g of 96Zr isotope and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg y, the obtained 2νββ decay half-life measurement is View the MathML source. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2ν nuclear matrix element is extracted using the measured 2νββ half-life and is M2ν=0.049±0.002. Constraints on 0νββ decay have also been set
    corecore