200 research outputs found
Influences of thermal environment on fish growth
Indexación: Scopus.Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (ΔT 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.http://onlinelibrary.wiley.com/doi/10.1002/ece3.3239/ful
Behavior of the giant-dipole resonance in Sn and Pb at high excitation energ
The properties of the giant-dipole resonance (GDR) are calculated as a
function of excitation energy, angular momentum, and the compound nucleus
particle decay width in the nuclei Sn and Pb, and are compared
with recent experimental data. Differences observed in the behavior of the
full-width-at-half-maximum of the GDR for Sn and Pb are
attributed to the fact that shell corrections in Pb are stronger than
in Sn, and favor the spherical shape at low temperatures. The effects
shell corrections have on both the free energy and the moments of inertia are
discussed in detail. At high temperature, the FWHM in Sn exhibits
effects due to the evaporation width of the compound nucleus, while these
effects are predicted for Pb.Comment: 28 pages in RevTeX plus eight postscript figures. Submitted to Nucl.
Phys.
The Relativistic Factor in the Orbital Dynamics of Point Masses
There is a growing population of relativistically relevant minor bodies in
the Solar System and a growing population of massive extrasolar planets with
orbits very close to the central star where relativistic effects should have
some signature. Our purpose is to review how general relativity affects the
orbital dynamics of the planetary systems and to define a suitable relativistic
correction for Solar System orbital studies when only point masses are
considered. Using relativistic formulae for the N body problem suited for a
planetary system given in the literature we present a series of numerical
orbital integrations designed to test the relevance of the effects due to the
general theory of relativity in the case of our Solar System. Comparison
between different algorithms for accounting for the relativistic corrections
are performed. Relativistic effects generated by the Sun or by the central star
are the most relevant ones and produce evident modifications in the secular
dynamics of the inner Solar System. The Kozai mechanism, for example, is
modified due to the relativistic effects on the argument of the perihelion.
Relativistic effects generated by planets instead are of very low relevance but
detectable in numerical simulations
Avanços recentes em nutrição de larvas de peixes
Os requisitos nutricionais de larvas de peixes são ainda mal compreendidos, o que leva a altas mortalidades
e problemas de qualidade no seu cultivo. Este trabalho pretende fazer uma revisão de novas metodologias de investigação, tais
como estudos com marcadores, genómica populacional, programação nutricional, génomica e proteómica funcionais, e
fornecer ainda alguns exemplos das utilizações presentes e perspectivas futuras em estudos de nutrição de larvas de peixes
Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster
The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy
In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease
- …