Abstract

The properties of the giant-dipole resonance (GDR) are calculated as a function of excitation energy, angular momentum, and the compound nucleus particle decay width in the nuclei 120^{120}Sn and 208^{208}Pb, and are compared with recent experimental data. Differences observed in the behavior of the full-width-at-half-maximum of the GDR for 120^{120}Sn and 208^{208}Pb are attributed to the fact that shell corrections in 208^{208}Pb are stronger than in 120^{120}Sn, and favor the spherical shape at low temperatures. The effects shell corrections have on both the free energy and the moments of inertia are discussed in detail. At high temperature, the FWHM in 120^{120}Sn exhibits effects due to the evaporation width of the compound nucleus, while these effects are predicted for 208^{208}Pb.Comment: 28 pages in RevTeX plus eight postscript figures. Submitted to Nucl. Phys.

    Similar works