267 research outputs found

    The Origin of the Silicate Emission Features in the Seyfert 2 Galaxy, NGC 2110

    Full text link
    The unified model of active galactic nuclei (AGN) predicts silicate emission features at 10 and 18 microns in type 1 AGN, and such features have now been observed in objects ranging from distant QSOs to nearby LINERs. More surprising, however, is the detection of silicate emission in a few type 2 AGN. By combining Gemini and Spitzer mid-infrared imaging and spectroscopy of NGC 2110, the closest known Seyfert 2 galaxy with silicate emission features, we can constrain the location of the silicate emitting region to within 32 pc of the nucleus. This is the strongest constraint yet on the size of the silicate emitting region in a Seyfert galaxy of any type. While this result is consistent with a narrow line region origin for the emission, comparison with clumpy torus models demonstrates that emission from an edge-on torus can also explain the silicate emission features and 2-20 micron spectral energy distribution of this object. In many of the best-fitting models the torus has only a small number of clouds along the line of sight, and does not extend far above the equatorial plane. Extended silicate-emitting regions may well be present in AGN, but this work establishes that emission from the torus itself is also a viable option for the origin of silicate emission features in active galaxies of both type 1 and type 2.Comment: ApJL, accepte

    The origin of the infrared emission in radio galaxies. III. Analysis of 3CRR objects

    Get PDF
    We present Spitzer photometric data for a complete sample of 19 low redshift (z<0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid- to far-infrared (MFIR) emission from radio-loud AGN. Our results show a correlation between AGN power (indicated by [OIII] 5007 emission line luminosity) and 24 micron luminosity. This result is consistent with the 24 micron thermal emission originating from warm dust heated directly by AGN illumination. Applying the same correlation test for 70 micron luminosity against [OIII] luminosity we find this relation to suffer from increased scatter compared to that of 24 micron. In line with our results for the higher-radio-frequency-selected 2Jy sample, we are able to show that much of this increased scatter is due to heating by starbursts which boost the far-infrared emission at 70 micron in a minority of objects (17-35%). Overall this study supports previous work indicating AGN illumination as the dominant heating mechanism for MFIR emitting dust in the majority of low to intermediate redshift radio galaxies (0.03<z<0.7), with the advantage of strong statistical evidence. However, we find evidence that the low redshift broad-line objects (z<0.1) are distinct in terms of their positions on the MFIR vs. [OIII] correlations.Comment: 31 pages, 3 figures, accepted for publication to Ap

    Dust Emission from Active Galactic Nuclei

    Get PDF
    Unified schemes of active galactic nuclei (AGN) require an obscuring dusty torus around the central source, giving rise to Seyfert 1 line spectrum for pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the observed IR is in broad agreement with this scheme, the behavior of the 10 micron silicate feature and the width of the far-IR emission peak remained serious problems in all previous modeling efforts. We show that these problems find a natural explanation if the dust is contained in about 5-10 clouds along radial rays through the torus. The spectral energy distributions (SED) of both type 1 and type 2 sources are properly reproduced from different viewpoints of the same object if the visual optical depth of each cloud is larger than about 60 and the clouds' mean free path increases roughly in proportion to radial distance.Comment: 11 pages, submitted to ApJ Letter

    Mapping the radial structure of AGN tori

    Full text link
    We present mid-IR interferometric observations of 6 type 1 AGNs at multiple baseline lengths of 27--130m, reaching high angular resolutions up to lambda/B~0.02 arcseconds. For two of the targets, we have simultaneous near-IR interferometric measurements as well. The multiple baseline data directly probe the radial distribution of the material on sub-pc scales. Within our sample, which is small but spans over ~2.5 orders of magnitudes in the UV/optical luminosity L of the central engine, the radial distribution clearly and systematically changes with luminosity. First, we show that the brightness distribution at a given mid-IR wavelength seems to be rather well described by a power law, which makes a simple Gaussian or ring size estimation quite inadequate. Here we instead use a half-light radius R_1/2 as a representative size. We then find that the higher luminosity objects become more compact in normalized half-light radii R_1/2 /R_in in the mid-IR, where R_in is the dust sublimation radius empirically given by the L^1/2 fit of the near-IR reverberation radii. This means that, contrary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proportional to L^1/2, but increases with L much more slowly, or in fact, nearly constant at 13 micron. Combining the size information with the total flux specta, we infer that the radial surface density distribution of the heated dust grains changes from a steep ~r^-1 structure in high luminosity objects to a shallower ~r^0 structure in those of lower luminosity. The inward dust temperature distribution does not seem to smoothly reach the sublimation temperature -- on the innermost scale of ~R_in, a relatively low temperature core seems to co-exist with a slightly distinct brightness concentration emitting roughly at the sublimation temperature.Comment: accepted for publication in A&

    Isotropic Mid-Infrared Emission from the Central 100 pc of Active Galaxies

    Full text link
    Dust reprocesses the intrinsic radiation of active galactic nuclei (AGNs) to emerge at longer wavelengths. The observed mid-infrared (MIR) luminosity depends fundamentally on the luminosity of the central engine, but in detail it also depends on the geometric distribution of the surrounding dust. To quantify this relationship, we observe nearby normal AGNs in the MIR to achieve spatial resolution better than 100 pc, and we use absorption-corrected X-ray luminosity as a proxy for the intrinsic AGN emission. We find no significant difference between optically classified Seyfert 1 and 2 galaxies. Spectroscopic differences, both at optical and IR wavelengths, indicate that the immediate surroundings of AGNs is not spherically symmetric, as in standard unified AGN models. A quantitative analysis of clumpy torus radiative transfer models shows that a clumpy local environment can account for this dependence on viewing geometry while producing MIR continuum emission that remains nearly isotropic, as we observe, although the material is not optically thin at these wavelengths. We find some luminosity dependence on the X-ray/MIR correlation in the smallest scale measurements, which may indicate enhanced dust emission associated with star formation, even on these sub-100 pc scales.Comment: 10 pages, 5 figures; accepted for publication in Ap

    AGN Dusty Tori: II. Observational Implications of Clumpiness

    Get PDF
    From extensive radiative transfer calculations we find that clumpy torus models with \No \about 5--15 dusty clouds along radial equatorial rays successfully explain AGN infrared observations. The dust has standard Galactic composition, with individual cloud optical depth \tV \about 30--100 at visual. The models naturally explain the observed behavior of the 10\mic silicate feature, in particular the lack of deep absorption features in AGN of any type. The weak 10\mic emission feature tentatively detected in type 2 QSO can be reproduced if in these sources \No drops to \about 2 or \tV exceeds \about 100. The clouds angular distribution must have a soft-edge, e.g., Gaussian profile, the radial distribution should decrease as 1/r1/r or 1/r21/r^2. Compact tori can explain all observations, in agreement with the recent interferometric evidence that the ratio of the torus outer to inner radius is perhaps as small as \about 5--10. Clumpy torus models can produce nearly isotropic IR emission together with highly anisotropic obscuration, as required by observations. In contrast with strict variants of unification schemes where the viewing-angle uniquely determines the classification of an AGN into type 1 or 2, clumpiness implies that it is only a probabilistic effect; a source can display type 1 properties even from directions close to the equatorial plane. The fraction of obscured sources depends not only on the torus angular thickness but also on the cloud number \No. The observed decrease of this fraction at increasing luminosity can be explained with a decrease of either torus angular thickness or cloud number, but only the latter option explains also the possible emergence of a 10\mic emission feature in QSO2.Comment: To appear in ApJ September 20, 200

    Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster

    Get PDF
    High resolution observations with the NIR adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, focusing on stellar mass loss. This leads to clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec scale region (accessible via SINFONI observations) to the (sub-)parsec scale region (observable with the MIDI instrument and via water maser emission). In this work, we concentrate on the effects of a parametrised turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Input parameters are constrained by observations of the nearby Seyfert 2 galaxy NGC 1068. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8 to 0.9 pc, gas masses of 1.0e6 solar masses and mass transfer rates of 0.025 solar masses per year through the inner rim of the disc. This shows that our large scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well.Comment: 13 pages, 11 figures, accepted for publication in MNRAS, updated author list and reference

    On the size-luminosity relation of AGN dust tori in the mid-infrared

    Full text link
    Interferometric measurements in the mid-infrared have shown that the sizes of the warm dust distributions in active galactic nuclei are consistent with their scaling with the square root of their luminosity. We carry out a more detailed analysis of this size-luminosity relation to investigate which of the general properties of the dusty tori in active galactic nuclei can be derived from this relation. We improve the accuracy of the size-luminosity relation by adding a few additional size measurements from more recent interferometric observations and compare the measured sizes to those derived from hydrodynamical and radiative transfer models of AGN tori. We find that a Gaussian approximation yields a reasonable estimate of the size of the brightness distribution, as long as the visibilities are within 0.2 {\leg} V {\leg} 0.9. The size estimates derived from the models are consistent with those determined from the measurements. However, the models predict a significant offset between the sizes derived for face-on and edge-on tori. This offset is not observed in the current data, probably because of the large uncertainties and low statistics of the present interferometric measurements. Furthermore, we find a ratio of the mid- to near-infrared sizes of approximately 30, whereas the first probes the body of the torus and the second is an estimate of the inner rim. The size-luminosity relation of AGN tori using Gaussian size estimates is a very simple and effective tool to investigate the internal structure and geometry of AGN tori and obtain constraints on the differences between type 1 and type 2 AGN. However, to fully exploit the possibilities of investigating the nuclear distributions of gas and dust in AGN using this size-luminosity relation, more accurate interferometric measurements of a larger sample of AGN are needed.Comment: 10 pages, 4 figures, accepted for publication in A&

    The power output of local obscured and unobscured AGN: crossing the absorption barrier with Swift/BAT and IRAS

    Full text link
    The Swift/BAT 9-month catalogue of active galactic nuclei (AGN) provides an unbiased census of local supermassive black hole accretion, and probes to all but the highest levels of absorption in AGN. We explore a method for characterising the bolometric output of both obscured and unobscured AGN by combining the hard X-ray data from Swift/BAT (14-195keV) with the reprocessed IR emission as seen with the IRAS all-sky surveys. This approach bypasses the complex modifications to the SED introduced by absorption in the optical, UV and 0.1-10 keV regimes and provides a long-term, average picture of the bolometric output of these sources. We broadly follow the approach of Pozzi et al. for calculating the bolometric luminosities by adding nuclear IR and hard X-ray luminosities, and consider different approaches for removing non-nuclear contamination in the large-aperture IRAS fluxes. Using mass estimates from the M_BH-L_bulge relation, we present the Eddington ratios \lambda_Edd and 2-10 keV bolometric corrections for a subsample of 63 AGN (35 obscured and 28 unobscured) from the Swift/BAT catalogue, and confirm previous indications of a low Eddington ratio distribution for both samples. Importantly, we find a tendency for low bolometric corrections (typically 10-30) for the obscured AGN in the sample (with a possible rise from ~15 for \lambda_Edd<0.03 to ~32 above this), providing a hitherto unseen window onto accretion processes in this class of AGN. This finding is of key importance in calculating the expected local black hole mass density from the X-ray background since it is composed of emission from a significant population of such obscured AGN. Analogous studies with high resolution IR data and a range of alternative models for the torus emission will form useful future extensions to this work. (Abridged)Comment: 19 pages, 16 figures, 2 tables. Accepted for publication in MNRA

    Testing the Unification Model for AGN in the Infrared: are the obscuring tori of Type 1 and 2 Seyferts different?

    Full text link
    We present new mid-infrared (MIR) imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared nuclear spectral energy distributions (SEDs). Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct AGN emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Seyfert 2 tori have larger covering factors and smaller escape probabilities than those of Seyfert 1. All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination towards us, in contradiction with the simplest unification model.Comment: 21 pages, 14 figures, Appendix including supplementary figures. Accepted by Ap
    • …
    corecore