468 research outputs found
Shade trees decrease pest abundances on brassica crops in Kenya
Agroforestry practices may mitigate the current loss of biodiversity and ecosystem services due to deforestation and agricultural intensification. To examine the effects of agroforestry on the ecosystem service of pest regulation, we assessed pest abundances and biological control potential in shaded and open kale (Brassica oleracea L. acephala) fields in Western Kenya. Specifically, we compared the abundance of pest aphids and caterpillars, ground-dwelling ants, spiders and predatory beetles, and examined aphid parasitism rates, predation rates on diamondback moth eggs, attack rates on surrogate caterpillars and bird predation on aphids. Shade trees effectively reduced abundances of aphids, caterpillars and increased abundances of spiders and predatory beetles, but neither affected ant abundances, or predation and parasitism rates. Our results suggest that presence of shade trees can decrease pest abundances, but that this is not only due to improved biological control by natural enemies but also due to microclimatic conditions affecting pest performance and bottom-up processes such as changes in plant quality and soil conditions. We encourage studies exploring simultaneously how top-down and bottom-up processes affect pest regulation in agroforestry settings
Pain and mental health - separate and joint associations with sickness absence among young employees
Peer reviewe
Aspartylglycosaminuria in the Finnish population: Identification of two point mutations in the heavy chain of glycoasparaginase
Aspartylglycosaminuria is an inherited lysosomal storage disease caused by deficiency of glycoasparaginase (EC 3.5.1.26) and occurs with higher frequency among Finns than other populations. We have purified human glycoasparaginase and determined about 90% of the amino acid sequence of its light subunit and >70% of that of its heavy subunit by Edman degradation and mass spectrometry. Additional sequence data were obtained from the cloning and subsequent nucleotide analysis of a cDNA corresponding to the normal human glycoasparaginase gene. The enzyme is encoded by a single mRNA as a single polypeptide that is posttranslationally processed to generate the subunits and is glycosylated. After preparing first-strand cDNA from leukocyte and fibroblast total RNA, we used the polymerase chain reaction to amplify the glycoasparaginase cDNA of eight Finnish aspartylglycosaminuria patients. We demonstrate that the Finnish patients' mRNA sequence differed from the normal sequence by two single-base changes six nucleotides apart from one another in the heavy chain of glycoasparaginase. The first change resulted in the replacement of arginine by glutamine (R161Q), whereas the second change resulted in a cysteine to serine substitution (C163S). Both mutations resulted in novel restriction endonuclease sites and were present in all eight Finnish aspartylglycosaminuria patients originating from different pedigrees, but they were absent from Finnish and non-Finnish controls and a non-Finnish case of aspartylglycosaminuria. These results indicate molecular homogeneity in aspartylglycosaminuria alleles in the Finnish population
Preregistration Classification of Mobile LIDAR Data Using Spatial Correlations
We explore a novel paradigm for light detection and ranging (LIDAR) point classification in mobile laser scanning (MLS). In contrast to the traditional scheme of performing classification for a 3-D point cloud after registration, our algorithm operates on the raw data stream classifying the points on-the-fly before registration. Hence, we call it preregistration classification (PRC). Specifically, this technique is based on spatial correlations, i.e., local range measurements supporting each other. The proposed method is general since exact scanner pose information is not required, nor is any radiometric calibration needed. Also, we show that the method can be applied in different environments by adjusting two control parameters, without the results being overly sensitive to this adjustment. As results, we present classification of points from an urban environment where noise, ground, buildings, and vegetation are distinguished from each other, and points from the forest where tree stems and ground are classified from the other points. As computations are efficient and done with a minimal cache, the proposed methods enable new on-chip deployable algorithmic solutions. Broader benefits from the spatial correlations and the computational efficiency of the PRC scheme are likely to be gained in several online and offline applications. These range from single robotic platform operations including simultaneous localization and mapping (SLAM) algorithms to wall-clock time savings in geoinformation industry. Finally, PRC is especially attractive for continuous-beam and solid-state LIDARs that are prone to output noisy data
Stable pollination service in a generalist high Arctic community despite the warming climate
Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming-associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.Peer reviewe
Recommended from our members
Related herbivore species show similar temporal dynamics
1.Within natural communities, different taxa display different dynamics in time. Why this is the case we do not fully know. This thwarts our ability to predict changes in community structure, which is important for both the conservation of rare species in natural communities and for the prediction of pest outbreaks in agriculture.
2.Species sharing phylogeny, natural enemies and/or lifeâhistory traits have been hypothesized to share similar temporal dynamics. We operationalized these concepts into testing whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among herbivorous community members.
3.Focusing on two similar datasets from different geographical regions (Finland and Japan), we used asymmetric eigenvector maps as temporal variables to characterize speciesâ and communityâlevel dynamics of specialist insect herbivores on oak (Quercus). We then assessed whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among taxa.
4.Speciesâspecific temporal dynamics varied widely, ranging from directional decline or increase to more complex patterns. Phylogeny was a clear predictor of similarity in temporal dynamics at the Finnish site, whereas for the Japanese site, the data were uninformative regarding a phylogenetic imprint. Voltinism, feeding guild and parasitoid overlap explained little variation at either location. Despite the rapid temporal dynamics observed at the level of individual species, these changes did not translate into any consistent temporal changes at the community level in either Finland or Japan.
5.Overall, our findings offer no direct support for the notion that species sharing natural enemies and/or lifeâhistory traits would be characterized by similar temporal dynamics, but reveal a strong imprint of phylogenetic relatedness. As this phylogenetic signal cannot be attributed to guild, voltinism or parasitoids, it will likely derive from shared microhabitat, microclimate, anatomy, physiology or behaviour. This has important implications for predicting insect outbreaks and for informing insect conservation. We hope that future studies will assess the generality of our findings across plantâfeeding insect communities and beyond, and establish the more precise mechanism(s) underlying the phylogenetic imprint
Stable pollination service in a generalist high Arctic community despite the warming climate
Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warmingâassociated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised
- âŠ