1,297 research outputs found

    A Process for Stochastic Material Analysis based on Empirical Data

    Get PDF
    Material properties are often dominated by imperfections and geometrical variations in micro-scale. The manufacturing process of complex parts as stringers and their assembly creates specific microscopic imperfections whose influence to phenomena like delamination growth can not be understood with a deterministic homogenised material model. This paper describes a general approach to develop a stochastic model of anisotropic micro-structure on the basis of high-resolution image data. This approach uses a surrogate model for approximating material properties of meso-scale material blocks. The empirical material properties provided by the surrogate model are analysed for their marginal distribution and spatial covariance

    Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors

    Get PDF
    Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material

    Darstellung der extra- und intrakraniellen hirnversorgenden Arterien durch die kontrastmittelunterstützte Farbduplexsonographie

    Full text link
    Ultraschallkontrastmittel finden in der Diagnostik der extra- und intrakraniellen Arterien Anwendung, wenn die klinische Fragestellung nicht eindeutig zu beantworten ist. Diese Studie untersuchte den diagnostischen Zugewinn durch die Kontrastmittelgabe über eine Infusionspumpe. In der extrakraniellen Darstellung der Karotiden fanden 17 Untersuchungen statt, hier ging es um den Stenosegrad des Gefäßes. In der intrakraniellen Diagnostik wurde es 65mal eingesetzt, v.a. bezüglich eines potentiellen Kollateralkreislaufes innerhalb des Circulus arteriosus cerebri. Es konnte eine deutliche Verbesserung der Untersuchungsbedingungen in der Doppler- / Farbduplexsonographie festgestellt werden. Eine Diagnosestellung gelang in der extrakraniellen Anwendung ausnahmslos, in der intrakraniellen mißlang sie bei nur vier Patienten. Ein Kollateralfluß über die A. communicans anterior bzw. posterior konnte bei 25 bzw. 32 Untersuchungen nachgewiesen werden (zuvor jeweils einmal). Die Kontrastmittelinfusion mittels Spritzenpumpe gewährte gute Untersuchungsbedingungen und kann in vielen Fällen die teurere und gefährlichere Angiographie ersetzen

    Phylogenetic Signals of Salinity and Season in Bacterial Community Composition Across the Salinity Gradient of the Baltic Sea

    Get PDF
    Understanding the key processes that control bacterial community composition has enabled predictions of bacterial distribution and function within ecosystems. In this study, we used the Baltic Sea as a model system to quantify the phylogenetic signal of salinity and season with respect to bacterioplankton community composition. The abundances of 16S rRNA gene amplicon sequencing reads were analyzed from samples obtained from similar geographic locations in July and February along a brackish to marine salinity gradient in the Baltic Sea. While there was no distinct pattern of bacterial richness at different salinities, the number of bacterial phylotypes in winter was significantly higher than in summer. Bacterial community composition in brackish vs. marine conditions, and in July vs. February was significantly different. Non-metric multidimensional scaling showed that bacterial community composition was primarily separated according to salinity and secondly according to seasonal differences at all taxonomic ranks tested. Similarly, quantitative phylogenetic clustering implicated a phylogenetic signal for both salinity and seasonality. Our results support that global patterns of bacterial community composition with respect to salinity and season are the result of phylogenetically clustered ecological preferences with stronger imprints from salinity

    Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities

    Get PDF
    Dispersal is a major organising force in metacommunities, which may facilitate compositional responses of local communities to environmental change and affect ecosystem function. Organism groups differ widely in their dispersal abilities and their communities are therefore expected to have different adaptive abilities. In mesocosms, we studied the simultaneous compositional response of three plankton communities (zoo-, phyto- and bacterioplankton) to a primary productivity gradient and evaluated how this response was mediated by dispersal intensity. Dispersal enhanced responses in all three planktonic groups, which also affected ecosystem functioning. Yet, variation partitioning analyses indicated that responses in phytoplankton and bacterial communities were not only controlled by dispersal directly but also indirectly through complex trophic interactions. Our results indicate that metacommunity patterns emerging from dispersal can cascade through the food web and generate patterns of apparent dispersal limitation in organisms at other trophic levels.

    Phenotypic indicators to identify methionine rich European grain legumes and the correlation of grain methionine contents with the sulphur supply

    Get PDF
    Home grown legumes are a valuable protein source for pure on-farm diets for livestock in organic farming. Whereas protein of Glycine max naturally has higher contents of methionine nand also lysine typical European grain legumes (Pisum sativum L., Vicia faba L., Lupinus angustifolius L.) used in organic farms as component of animal food are relatively low in those amino acids

    Impact of a Major Inflow Event on the Composition and Distribution of Bacterioplankton Communities in the Baltic Sea

    Get PDF
    Major Baltic inflow (MBI) events carry highly saline water from the North Sea to the central Baltic Sea and thereby affect both its environmental conditions and its biota. While bacterioplankton communities in the Baltic Sea are strongly structured by salinity, how MBIs impact the composition and distribution of bacteria is unknown. The exceptional MBI in 2014, which brought saline and oxygenated water into the basins of the central Baltic Sea, enabled the linkage of microbiological investigations to hydrographic and modeling studies of this MBI. Using sequence data of 16S ribosomal RNA (rRNA) and 16S rRNA genes (rDNA), we analyzed bacterioplankton community composition in the inflowing water and in the uplifted former bottomwater at stations reached by the MBI. Bacterial diversity data were compared with respective data obtained from previous, non-inflow conditions. Changes in bacterial community composition following the 2014 MBI were mainly apparent at the genus level. A number of specific taxa were enriched in the inflowing water, with large changes in the rRNA/rDNA ratios indicating the different activity levels between of the water masses. The relative similarity of the bacterial communities in the inflowing and uplifted waters as well as the results from an inflow-simulating numerical model showed that the inflowing water did not originate directly from the North Sea but mostly from adjacent areas in the Baltic Sea. This suggested that the inflow event led to a series of shifts in Baltic Sea water masses among the Baltic Sea basins and a gradual mixing of the water bodies. Dramatic changes in the bacterial community composition occurred when the bottomwater inflow reached the anoxic, sulfidic deep basins, resulting in an uplifting of the formerly anoxic bacterial community, dominated by Epsilonproteobacteria. Our study of the impact of MBIs on bacterioplankton communities therefore highlights two relevant underlying mechanisms that impact the distribution and possibly also the activities of planktonic bacteria in the Baltic Sea: (1) the successive dilution of inflowing North Sea water with ambient waters and (2) the uplifting of former bottom-water communities to higher water strata.This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (projects JU367/15-1, JU367/16-1 to KJ and LA1466/8- 1 to ML). DH was supported by the European Regional Development Fund and the Estonian Research Council Mobilitas Plus Top Researcher grant “MOBTT24.” UG was supported by the BMBF project “Hydrodynamic observations and simulations of munition in the sea,” a subproject of the collaborative project “Environmental monitoring for the delaboration of munitions in the sea” (Grant No. #03F0747C).This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (projects JU367/15-1, JU367/16-1 to KJ and LA1466/8- 1 to ML). DH was supported by the European Regional Development Fund and the Estonian Research Council Mobilitas Plus Top Researcher grant “MOBTT24.” UG was supported by the BMBF project “Hydrodynamic observations and simulations of munition in the sea,” a subproject of the collaborative project “Environmental monitoring for the delaboration of munitions in the sea” (Grant No. #03F0747C)
    corecore