121 research outputs found

    Decoherence of phonons in weakly and strongly-interacting Bose-Einstein condensates

    Get PDF
    This work investigates the theoretical and experimental decoherence of phonons in weakly and strongly-interacting Bose-Einstein Condensates (BECs). The theoretical analysis treats phonons as open quantum systems where the environment comprises all other quasi-particle modes of the BEC. The phonons are assumed to be Gaussian states and the time in which they decohere is estimated from the evolution of their purity and nonclassical depth in the dissipative channel. The calculations are performed for various BEC systems and it is found that the excited phonon states will always decohere much more rapidly than the rate at which they relax back to equilibrium with the environment. Part II of this work considers how the decoherence of the phonons can be measured experimentally. The experiment that is currently being investigated uses a strongly-interacting [superscript]6Li BEC where the scattering length can be varied with an external magnetic field. In a strongly-interacting Bose gas the mutual interaction between the condensed and noncondensed components plays a greater role than in weakly-interacting gases and results in distinct absorption images. Understanding the effects from this mutual interaction is vital to model the in-situ absorption images of a strongly-interacting BEC in order to extract accurate information such as that which will facilitate the experimental measurement of decoherence. Three theoretical models that could be used to fit in-situ absorption images of a strongly-interacting gas are analysed. These are the bi-modal, semi-ideal and Hartree-Fock models, which will be fit against the absorption images of the [superscript]6Li BEC for various scattering lengths. The validity of these models is also investigated to determine when beyond mean-field effects may be observed in the Bose gas. Controlling decoherence is essential to the operation and physical realisation of many quantum information tasks and quantum technologies. Recently, new technologies have emerged from relativistic quantum information science that, in principle, are more precise than their non-relativistic counterparts. The practical setup of these devices utilizes phonons of BECs but the decoherence of the phonons has not been considered. In this work, one of the BEC systems used to estimate the decoherence time of the phonons has been chosen to be based on these devices. This calculation is expected to inform the practical realization of these devices and inspire future related studies. Analogue gravity investigations based on BECs also utilize phonons, for example, in the analogue of Hawking radiation. The quantum properties of these states is of particular interest in these studies and understanding how they decohere, and at what rate, could potentially inform the theory of black hole physics as well as dictate what is possible to measure experimentally

    Decoherence of phonons in weakly and strongly-interacting Bose-Einstein condensates

    Get PDF
    This work investigates the theoretical and experimental decoherence of phonons in weakly and strongly-interacting Bose-Einstein Condensates (BECs). The theoretical analysis treats phonons as open quantum systems where the environment comprises all other quasi-particle modes of the BEC. The phonons are assumed to be Gaussian states and the time in which they decohere is estimated from the evolution of their purity and nonclassical depth in the dissipative channel. The calculations are performed for various BEC systems and it is found that the excited phonon states will always decohere much more rapidly than the rate at which they relax back to equilibrium with the environment. Part II of this work considers how the decoherence of the phonons can be measured experimentally. The experiment that is currently being investigated uses a strongly-interacting [superscript]6Li BEC where the scattering length can be varied with an external magnetic field. In a strongly-interacting Bose gas the mutual interaction between the condensed and noncondensed components plays a greater role than in weakly-interacting gases and results in distinct absorption images. Understanding the effects from this mutual interaction is vital to model the in-situ absorption images of a strongly-interacting BEC in order to extract accurate information such as that which will facilitate the experimental measurement of decoherence. Three theoretical models that could be used to fit in-situ absorption images of a strongly-interacting gas are analysed. These are the bi-modal, semi-ideal and Hartree-Fock models, which will be fit against the absorption images of the [superscript]6Li BEC for various scattering lengths. The validity of these models is also investigated to determine when beyond mean-field effects may be observed in the Bose gas. Controlling decoherence is essential to the operation and physical realisation of many quantum information tasks and quantum technologies. Recently, new technologies have emerged from relativistic quantum information science that, in principle, are more precise than their non-relativistic counterparts. The practical setup of these devices utilizes phonons of BECs but the decoherence of the phonons has not been considered. In this work, one of the BEC systems used to estimate the decoherence time of the phonons has been chosen to be based on these devices. This calculation is expected to inform the practical realization of these devices and inspire future related studies. Analogue gravity investigations based on BECs also utilize phonons, for example, in the analogue of Hawking radiation. The quantum properties of these states is of particular interest in these studies and understanding how they decohere, and at what rate, could potentially inform the theory of black hole physics as well as dictate what is possible to measure experimentally

    A high-throughput synthetic platform enables the discovery of proteomimetic cell penetrating peptides and bioportides

    Get PDF
    Collectively, cell penetrating peptide (CPP) vectors and intrinsically active bioportides possess tremendous potential for drug delivery applications and the discrete modulation of intracellular targets including the sites of protein–protein interactions (PPIs). Such sequences are usually relatively short (< 25 AA), polycationic in nature and able to access the various intracellular compartments of eukaryotic cells without detrimental influences upon cellular biology. The high-throughput platform for bioportide discovery described herein exploits the discovery that many human proteins are an abundant source of potential CPP sequences which are reliably predicted using QSAR algorithms or other methods. Subsequently, microwave-enhanced solid phase peptides synthesis provides a high-throughput source of novel proteomimetic CPPs for screening purposes. By focussing upon cationic helical domains, often located within the molecular interfaces that facilitate PPIs, bioportides which act by a dominant-negative mechanism at such sites can be reliably identified within small number libraries of CPPs. Protocols that employ fluorescent peptides, routinely prepared by N-terminal acylation with carboxytetramethylrhodamine, further enable both the quantification of cellular uptake kinetics and the identification of specific site(s) of intracellular accretion. Chemical modifications of linear peptides, including strategies to promote and stabilise helicity, are compatible with the synthesis of second-generation bioportides with improved drug-like properties to further exploit the inherent selectivity of biologics

    Seesaw scales and the steps from the Standard Model towards superstring-inspired flipped E_6

    Full text link
    Recently in connection with Superstring theory E_8 and E_6 unifications became very promising. In the present paper we have investigated a number of available paths from the Standard Model (SM) to the E_6 unification, considering a chain of flipped models following the extension of the SM: SU(3)_C\times SU(2)_L\times U(1)_Y \to SU(3)_C\times SU(2)_L\times U(1)_X \times U(1)_Z \to SU(5)\times U(1)_X \to SU(5)\times U(1)_{Z1} \times U(1)_{X1} \to SO(10) \times U(1)_{X1} \to SO(10) \times U(1)_{Z2}\times U(1)_{X2} \to E_6\times U(1)_{X2} or E_6, Also we have considered a chain with a left-right symmetry: SU(3)_C\times SU(2)_L\times U(1)_Y \to SU(3)_C\times SU(2)_L \times SU(2)_R\times U(1)_X\times U(1)_Z \to SU(4)_C\times SU(2)_L \times SU(2)_R\times U(1)_Z \to SO(10)\times U(1)_Z \to E_6. We have presented four examples including non-supersymmetric and supersymmetric extensions of the SM and different contents of the Higgs bosons providing the breaking of the flipped SO(10) and SU(5) down to the SM. It was shown that the final unification E_6\times U(1) or E_6 at the (Planck) GUT scale M_{SSG} depends on the number of the Higgs boson representations considered in theory.Comment: 25 pages, 7 figure

    Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos

    Full text link
    We discuss a new variant of the E6 inspired supersymmetric standard model (E6SSM) in which the two inert singlinos are exactly massless and the dark matter candidate has a dominant bino component. A successful relic density is achieved via a novel mechanism in which the bino scatters inelastically into heavier inert Higgsinos during the time of thermal freeze-out. The two massless inert singlinos contribute to the effective number of neutrino species at the time of Big Bang Nucleosynthesis, where the precise contribution depends on the mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV we find Neff \approx 3.2, where the smallness of the additional contribution is due to entropy dilution. We study a few benchmark points in the constrained E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE

    Homology between neurohypophyseal hormone receptors

    Full text link

    Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells

    Get PDF
    Phage display screening allows the study of functional protein–protein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-derived peptide, can be displayed on the phage envelope and mediate receptor-independent uptake of internalizing phage into cells. We also show that an internalizing-phage construct displaying an established mitochondria-specific localization signal targets mitochondria, and that an internalizing-phage random peptide library selects for peptide motifs that localize to different intracellular compartments. As a proof-of-concept, we demonstrate that one such peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to mitochondria, and promotes cell death. This combinatorial platform technology has potential applications in cell biology and drug development

    Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides

    Get PDF
    The potential use of antisense and siRNA oligonucleotides as therapeutic agents has elicited a great deal of interest. However, a major issue for oligonucleotide-based therapeutics involves effective intracellular delivery of the active molecules. In this Survey and Summary, we review recent reports on delivery strategies, including conjugates of oligonucleotides with various ligands, as well as use of nanocarrier approaches. These are discussed in the context of intracellular trafficking pathways and issues regarding in vivo biodistribution of molecules and nanoparticles. Molecular-sized chemical conjugates and supramolecular nanocarriers each display advantages and disadvantages in terms of effective and nontoxic delivery. Thus, choice of an optimal delivery modality will likely depend on the therapeutic context
    corecore