45 research outputs found

    Production of oriented nitrogen-vacancy color centers in synthetic diamond

    Full text link
    The negatively charged nitrogen-vacancy (NV-) center in diamond is an attractive candidate for applications that range from magnetometry to quantum information processing. Here we show that only a fraction of the nitrogen (typically < 0.5 %) incorporated during homoepitaxial diamond growth by Chemical Vapor Deposition (CVD) is in the form of undecorated NV- centers. Furthermore, studies on CVD diamond grown on (110) oriented substrates show a near 100% preferential orientation of NV- centers along only the [111] and [-1-11] directions, rather than the four possible orientations. The results indicate that NV centers grow in as units, as the diamond is deposited, rather than by migration and association of their components. The NV unit of the NVH- is similarly preferentially oriented, but it is not possible to determine whether this defect was formed by H capture at a preferentially aligned NV center or as a complete unit. Reducing the number of NV orientations from 4 orientations to 2 orientations should lead to increased optically-detected magnetic resonance contrast and thus improved magnetic sensitivity in ensemble-based magnetometry.Comment: 13 Pages (inlcuding suplementary information), 4 figure

    The X-ray Luminosity Function of Bright Clusters in the Local Universe

    Full text link
    We present the X-ray luminosity function (XLF) for clusters of galaxies derived from the RASS1 Bright Sample. The sample, selected from the ROSAT All-Sky Survey in a region of 2.5 sr within the southern Galactic cap, contains 130 clusters with flux limits in the range ~ 3-4 x 10^-12 ergs/cm^2/s in the 0.5-2.0 keV band. A maximum-likelihood fit with a Schechter function of the XLF over the entire range of luminosities (0.045 - 28. x 10^44 ergs/s), gives alpha = 1.52 +/- 0.11, L_* = 3.80 +0.70 -0.55 x 10^44 ergs/s, and A = 5.07 +/- 0.45 x 10^-7 Mpc^-3 (10^44 ergs/s)^(\alpha-1). We investigate possible evolutionary effects within the sample, out to our redshift limit (z ~ 0.3), finding no evidence for evolution. Our results are in good agreement with other local estimates of the XLF, implying that this statistic for the local universe is now well determined. Comparison with XLFs for distant clusters (0.3 < z < 0.6), shows that no evolution is present for L_X < 10^{44} ergs/s. However, we detect differences at the 3 sigma level, between our local XLF and the distant one estimated by Henry et al. for the EMSS sample. This difference is still present when considering the EMSS sample revised by Nichol et al.Comment: 13 pages with 3 figures included, LaTex, aaspp4.sty and epsf.sty, accepted for publication in ApJ Letters, only minor changes, added reference

    The x-ray luminosity function of bright galaxy clusters in the local universe

    Get PDF
    We present the X-ray luminosity function (XLF) for clusters of galaxies derived from the RASS1 Bright Sample. The sample, selected from the ROSAT All-Sky Survey in a region of 2.5 sr within the southern Galactic cap, contains 130 clusters with flux limits in the range similar to 3-4 x 10(12) ergs cm(-2) s(-1) in the 0.5-2.0 keV band. A maximum likelihood fit with a Schechter function of the XLF over the entire range of luminosities (0.045-28.0 x 10(44) ergs s(-1)) gives alpha = 1.52(-0.11)(+0.11), L* = 3.80(-0.55)(+0.70) x 10(44) ergs s(-1), and A = 5.07 +/- 0.45 x 10(-7) Mpc(-3) (10(44) ergs s(-1))(alpha-1). We investigate possible evolutionary effects within the sample, out to our redshift limit (z similar to 0.3), finding no evidence for evolution. Our results are in good agreement with other local estimates of the XLF, implying that this statistic for the local universe is now well determined. Comparison with XLFs for distant clusters (0.3 &lt; z &lt; 0.6) shows that no evolution is present for L-X less than or similar to 10(44) ergs s(-1). However, we detect differences at the 3 sigma level between our local XLF and the distant one estimated by Henry et al. for the Einstein Extended Medium-Sensitivity Survey (EMSS) sample. This difference is still present when considering the EMSS sample revised by Nichol et al

    A Flux-limited Sample of Bright Clusters of Galaxies from the Southern Part of the ROSAT All-Sky Survey: the Catalog and the LogN-LogS

    Get PDF
    We describe the selection of an X-ray flux-limited sample of bright clusters of galaxies in the southern hemisphere, based on the first analysis of the ROSAT All-Sky Survey data (RASS1). The sample is constructed starting from an identification of candidate clusters in RASS1, and their X-ray fluxes are remeasured using the Steepness Ratio Technique. This method is better suited than the RASS1 standard algorithm for measuring flux from extended sources. The final sample is count-rate-limited in the ROSAT hard band (0.5-2.0 keV), so that due to the distribution of NH, its effective flux limit varies between about 3-4 x 10**-12 ergs cm**-2 s**-1 over the selected area. This covers the Decl<2.5 deg part of the south Galactic cap region (b<-20 deg) - with the exclusion of patches of low RASS1 exposure time and of the Magellanic Clouds area - for a total of 8235 deg**2. 130 candidate sources fulfill our selection criteria for bonafide clusters of galaxies in this area. Of these, 101 are Abell/ACO clusters, while 29 do not have a counterpart in these catalogs. Of these clusters, 126 (97%) clusters have a redshift and for these we compute an X-ray luminosity. 20% of the cluster redshifts come from new observations, as part of the ESO Key Program REFLEX Cluster Survey that is under completion. Considering the intrinsic biases and incompletenesses introduced by the flux selection and source identification processes, we estimate the overall completeness to be better than 90%. The observed number count distribution, LogN-LogS, is well fitted by a power law with slope alpha = 1.34 +/- 0.15 and normalization A = 11.87 +/- 1.04 sr**-1 (10**-11 ergs cm**-2 s**-1)**alpha, in good agreement with other measurements.Comment: 27 pages, 8 figures and 3 tables included, LaTex, emulateapj.sty and epsf.sty, accepted for publication in ApJ: scheduled for the March 20, 1999, Vol.514. The cluster catalog is available at http://www.merate.mi.astro.it/~degrand

    The Chandra survey of the COSMOS field II: source detection and photometry

    Full text link
    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program, that covers the central contiguous ~0.92 deg^2 of the COSMOS field. C-COSMOS is the result of a complex tiling, with every position being observed in up to six overlapping pointings (four overlapping pointings in most of the central ~0.45 deg^2 area with the best exposure, and two overlapping pointings in most of the surrounding area, covering an additional ~0.47 deg^2). Therefore, the full exploitation of the C-COSMOS data requires a dedicated and accurate analysis focused on three main issues: 1) maximizing the sensitivity when the PSF changes strongly among different observations of the same source (from ~1 arcsec up to ~10 arcsec half power radius); 2) resolving close pairs; and 3) obtaining the best source localization and count rate. We present here our treatment of four key analysis items: source detection, localization, photometry, and survey sensitivity. Our final procedure consists of a two step procedure: (1) a wavelet detection algorithm, to find source candidates, (2) a maximum likelihood Point Spread Function fitting algorithm to evaluate the source count rates and the probability that each source candidate is a fluctuation of the background. We discuss the main characteristics of this procedure, that was the result of detailed comparisons between different detection algorithms and photometry tools, calibrated with extensive and dedicated simulations.Comment: Accepted for publication in The Astrophysical Journal Supplement Serie

    The ROSAT All-Sky Survey: a Catalog of Clusters of Galaxies in a Region of 1 Ster around the South Galactic Pole

    Get PDF
    A field of 1.013 ster in the ROSAT all-sky survey (RASS), centered on the south galactic pole (SGP), has been searched in a systematic, objective manner for clusters of galaxies. The procedure relied on a correlation of the X-ray positions and properties of ROSAT sources with the distribution of galaxies in the COSMOS digitised data base, which was obtained by scanning the plates of the UK Schmidt IIIa-J optical southern sky survey. The study used the second ROSAT survey data base (RASS-2) and included several optical observing campaigns to measure redshifts. The search, a precursor to the larger REFLEX survey of the whole southern sky, reached the detection limits of the RASS and the COSMOS data, and yielded a catalog of 186 clusters in which the lowest flux is 1.5e-12 erg/cm2/s in the 0.1-2.4 keV band. Of these 157 have measured redshifts. Using a limit of 3.0e-12 erg/cm2/s a complete subset of 112 clusters was obtained, of which 110 have measured redshifts. The spatial distribution of the X-ray clusters out to z = 0.15 shows an extension of the Local Supercluster to the Pisces-Cetus supercluster (z<~0.07), and a more distant orthogonal structure at 0.07<z<0.15.Comment: To be published in ApJ Supplements in February 2002: 53 pages: 18 figure

    High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

    Get PDF
    We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.Comment: LATEX format: 10 pages and 3 figures: accepted for publication in the Astrophysical Journal Letter

    The XMM Cluster Survey: X-ray analysis methodology

    Get PDF
    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5,776 XMM observations used to construct the current XCS source catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are detected with > 300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of < 40 (< 10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMM images. These tests show that the simple isothermal beta-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing our optical analysis methodology and presenting a first set of confirmed clusters has now been submitted to MNRA
    corecore