961 research outputs found

    Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Get PDF
    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable

    Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles

    Get PDF
    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e. g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols

    Investigation, testing, and development of an electron-bombardment ion engine system final report, mar. 3 - dec. 14, 1964

    Get PDF
    Electron bombardment, mercury-fueled ion engine system - investigation, testing, and development progra

    Examining networked NGO services: reconceptualising value co-creation

    Get PDF
    Purpose – This study explains how value is co-created in a many-to-many context. We use a case study of a non-governmental sector service delivery consortium engaging multiple actors to examine how value is co-created beyond the buyer-supplier dyad. Design/methodology/approach – An explanatory case study of a consortium of seven UK non-governmental organisations (NGO) delivering public service contracts is presented. Multiple data collection methods are combined; semi structured interviews (n=30) and focus groups with internal stakeholders (n=5), participant observations (n=4) and document analysis. Findings – We use three illustrative empirical examples to show how different sources, types, enablers and mechanisms of VCC are evident during service provision activities. Our findings show how different service provision activities utilise different dimensions, leading us to suggest that dimensions of VCC may be context dependent. Research limitations/implications – As consortia differ in their context and function our findings may not be generalisable. Nevertheless, they provide specific examples of sources, types, enablers and mechanisms of value co-creation that may be applicable to private, public and non-governmental organisations. Practical implications – Understanding how value is co-created with multiple stakeholders can offer competitive advantages likely to lead to improved sustainability, impact and performance. Originality/value – The empirical study offers a reconceptualisation of value co-creation in a many-to-many context. The paper combines disparate perspectives of value co-creation to offer a more holistic perspective

    Canary in the Forest?—Tree mortality and canopy dieback of western redcedar linked to drier and warmer summers

    Get PDF
    Aim: Forest dieback is increasing from unfavourable climate conditions. Western redcedar (WRC)—a culturally, ecologically and economically important species—has recently experienced anomalously high mortality rates and partial canopy dieback. We investigated how WRC tree growth and dieback responded to climate variability and drought using tree-ring methods. Location: Pacific Northwest, USA. Taxon: Western redcedar (Thuja plicata). Methods: We collected tree cores from three tree health status groups (no canopy dieback, partial canopy dieback, and dead trees) at 11 sites in coastal (maritime climate) and interior (continental climate) WRC populations. From growth rates, we computed four growth indices that assessed the resilience to drought and estimated the year of death. Results: Warmer and drier climate conditions in May/June that extended the annual July-to- September dry season reduced radial growth in 9 of 11 sites (1975–2020). WRC trees recovered growth to pre-drought rates within 3 years when post-drought climate conditions were cooler/wetter than average. However, recovery from drought was slower or absent when warmer/drier conditions occurred during the post-drought recovery period, possibly leading to the recent and widespread mortality across the coastal population. WRC mortality was portended by 4–5 years of declining growth. Annually-resolved mortality in coastal populations predominately occurred in 2017–2018 (80% of sampled dead trees), a period that coincided with exceedingly hot temperatures and the longest regionally dry period from May to September (1970–2020). In interior populations, mortality was dispersed among years but associated with warmer and drier conditions from August to September. Main conclusions: Our findings forewarn that a warming climate and more frequent and severe summer droughts, especially in consecutive years, will likely increase the vulnerability of WRC to canopy dieback and mortality and possibly other drought-sensitive trees in one of the world\u27s largest forest carbon sinks

    The fading of Cassiopeia A, and improved models for the absolute spectrum of primary radio calibration sources

    Get PDF
    Based on five years of observations with the 40-foot telescope at Green Bank Observatory (GBO), Reichart & Stephens (2000) found that the radio source Cassiopeia A had either faded more slowly between the mid-1970s and late 1990s than Baars et al. (1977) had found it to be fading between the late 1940s and mid-1970s, or that it had rebrightened and then resumed fading sometime between the mid-1970s and mid-1990s, in L band (1.4 GHz). Here, we present 15 additional years of observations of Cas A and Cyg A with the 40-foot in L band, and three and a half additional years of observations of Cas A, Cyg A, Tau A, and Vir A with GBO's recently refurbished 20-meter telescope in L and X (9 GHz) bands. We also present a more sophisticated analysis of the 40-foot data, and a reanalysis of the Baars et al. (1977) data, which reveals small, but non-negligible differences. We find that overall, between the late 1950s and late 2010s, Cas A faded at an average rate of 0.670±0.0190.670 \pm 0.019 %/yr in L band, consistent with Reichart & Stephens (2000). However, we also find, at the 6.3σ\sigma credible level, that it did not fade at a constant rate. Rather, Cas A faded at a faster rate through at least the late 1960s, rebrightened (or at least faded at a much slower rate), and then resumed fading at a similarly fast rate by, at most, the late 1990s. Given these differences from the original Baars et al. (1977) analysis, and given the importance of their fitted spectral and temporal models for flux-density calibration in radio astronomy, we update and improve on these models for all four of these radio sources. In doing so, we additionally find that Tau A is fading at a rate of 0.102−0.043+0.0420.102^{+0.042}_{-0.043} %/yr in L band.Comment: 17 pages, 12 figures, accepted to MNRA

    Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites <i>Trypanosoma brucei rhodesiense</i> or <i>Trypanosoma brucei gambiense</i>, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in the severity of the neuroinflammatory response was detected when the inhibitor was administered in animals exhibiting the more severe, late central nervous system stage, of the infection. <i>In vitro</i> assays showed that Ro-61-8048 had no direct effect on trypanosome proliferation suggesting that the anti-inflammatory action is due to a direct effect of the inhibitor on the host cells and not a secondary response to parasite destruction. These findings demonstrate that kynurenine pathway catabolites are involved in the generation of the more severe inflammatory reaction associated with the late central nervous system stages of the disease and suggest that Ro-61-8048 or a similar drug may prove to be beneficial in preventing or ameliorating the PTRE when administered as an adjunct to conventional trypanocidal chemotherap

    Galaxy And Mass Assembly (GAMA): the wavelength dependence of galaxy structure versus redshift and luminosity

    Get PDF
    We study how the sizes and radial profiles of galaxies vary with wavelength, by fitting Sersic functions simultaneously to imaging in nine optical and near-infrared bands. To quantify the wavelength dependence of effective radius we use the ratio, R\mathcal{R}, of measurements in two restframe bands. The dependence of Sersic index on wavelength, N\mathcal{N}, is computed correspondingly. Vulcani et al. (2014) have demonstrated that different galaxy populations present sharply contrasting behaviour in terms of R\mathcal{R} and N\mathcal{N}. Here we study the luminosity dependence of this result. We find that at higher luminosities, early-type galaxies display a more substantial decrease in effective radius with wavelength, whereas late-types present a more pronounced increase in Sersic index. The structural contrast between types thus increases with luminosity. By considering samples at different redshifts, we demonstrate that lower data quality reduces the apparent difference between the main galaxy populations. However, our conclusions remain robust to this effect. We show that accounting for different redshift and luminosity selections partly reconciles the size variation measured by Vulcani et al. with the weaker trends found by other recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although the sample size is greatly reduced. Finally, we demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R\mathcal{R} and N\mathcal{N} for late-type galaxies. However, dust does not appear to explain the highest values of R\mathcal{R} and N\mathcal{N}. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure

    The SAMI Galaxy Survey: Gas Streaming and Dynamical M/L in Rotationally Supported Systems

    Get PDF
    Line-of-sight velocities of gas and stars can constrain dark matter (DM) within rotationally supported galaxies if they trace circular orbits extensively. Photometric asymmetries may signify non-circular motions, requiring spectra with dense spatial coverage. Our integral-field spectroscopy of 178 galaxies spanned the mass range of the SAMI Galaxy Survey. We derived circular speed curves (CSCs) of gas and stars from non-parametric Diskfit fits out to r∟2rer\sim2r_e. For 12/14 with measured H I profiles, ionized gas and H I maximum velocities agreed. We fitted mass-follows-light models to 163 galaxies by approximating the radial starlight profile as nested, very flattened mass homeoids viewed as a S\'ersic form. Fitting broad-band SEDs to SDSS images gave median stellar mass/light 1.7 assuming a Kroupa IMF vs. 2.6 dynamically. Two-thirds of the dynamical mass/light measures were consistent with star+remnant IMFs. One-fifth required upscaled starlight to fit, hence comparable mass of unobserved baryons and/or DM distributed similarly across the SAMI aperture that came to dominate motions as the starlight CSC declined rapidly. The rest had mass distributed differently from starlight. Subtracting fits of S\'ersic profiles to 13 VIKING Z-band images revealed residual weak bars. Near the bar PA, we assessed m = 2 streaming velocities, and found deviations usually <30 km/s from the CSC; three showed no deviation. Thus, asymmetries rarely influenced our CSCs despite co-located shock-indicating, emission-line flux ratios in more than 2/3.Comment: 21 pages, 15 figures. Accepted to MNRA
    • …
    corecore