816 research outputs found

    Pathogenic Variants in Fucokinase Cause a Congenital Disorder of Glycosylation

    Get PDF
    FUK encodes fucokinase, the only enzyme capable of converting L-fucose to fucose-1-phosphate, which will ultimately be used for synthesizing GDP-fucose, the donor substrate for all fucosyltransferases. Although it is essential for fucose salvage, this pathway is thought to make only a minor contribution to the total amount of GDP-fucose. A second pathway, the major de novo pathway, involves conversion of GDP-mannose to GDP-fucose. Here we describe two unrelated individuals who have pathogenic variants in FUK and who presented with severe developmental delays, encephalopathy, intractable seizures, and hypotonia. The first individual was compound heterozygous for c.667T>C (p.Ser223Pro) and c.2047C>T (p.Arg683Cys), and the second individual was homozygous for c.2980A>C (p.Lys994Gln). Skin fibroblasts from the first individual confirmed the variants as loss of function and showed significant decreases in total GDP-[3H] fucose and [3H] fucose-1-phosphate. There was also a decrease in the incorporation of [5,6-3H]-fucose into fucosylated glycoproteins. Lys994 has previously been shown to be an important site for ubiquitin conjugation. Here, we show that loss-of-function variants in FUK cause a congenital glycosylation disorder characterized by a defective fucose-salvage pathway

    Large Time Asymptotics in Contaminant Transport in Porous Media

    Full text link

    Shale disposal of U.S. high-level radioactive waste.

    Full text link
    Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    Linear and nonlinear convection in porous media between coaxial cylinders

    Get PDF
    We uncover novel features of three-dimensional natural convection in porous media by investigating convection in an annular porous cavity contained between two vertical coaxial cylinders. The investigations are made using a linear stability analysis, together with high-order numerical simulations using pseudospectral methods to model the nonlinear regime. The onset of convection cells and their preferred planform are studied, and the stability of the modes with respect to different types of perturbation is investigated. We also examine how variations in the Rayleigh number affect the convection modes and their stability regimes. Compared with previously published data, we show how the problem inherits an increased complexity regarding which modes will be obtained. Some stable secondary modes or mixed modes have been identified and some overlapping stability regions for different convective modes are determined

    Oligosaccharyltransferase Inhibition Induces Senescence in RTK-Driven Tumor Cells

    Get PDF
    Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that inhibit new targets in this biosynthetic pathway, we initiated a cell-based high throughput screen and lead compound optimization campaign that delivered a cell permeable inhibitor (NGI-1). NGI-1 targets the oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. In non-small cell lung cancer cells NGI-1 blocks cell surface localization and signaling of the EGFR glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or FGFR) for survival. In these cell lines OST inhibition causes cell cycle arrest accompanied by induction of p21, autofluorescence, and changes in cell morphology; all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor tyrosine kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells
    • …
    corecore