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Abstract

Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, 

stability, and cellular localization. To identify small molecules that inhibit new targets in this 

biosynthetic pathway, we initiated a cell-based high throughput screen and lead compound 

optimization campaign that delivered a cell permeable inhibitor (NGI-1). NGI-1 targets the 

oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and 

transfers oligosaccharides to recipient proteins. In non-small cell lung cancer cells NGI-1 blocks 

cell surface localization and signaling of the EGFR glycoprotein, but selectively arrests 

proliferation in only those cell lines that are dependent on EGFR (or FGFR) for survival. In these 

cell lines OST inhibition causes cell cycle arrest accompanied by induction of p21, 
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autofluorescence, and changes in cell morphology; all hallmarks of senescence. These results 

identify OST inhibition as a potential therapeutic approach for treating receptor tyrosine kinase-

dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation 

in mammalian cells.

INTRODUCTION

Asparagine (N)-linked glycosylation is a co- and post-translational modification common to 

proteins of the endoplasmic reticulum (ER) and secretory pathway1. This process requires 

the biosynthesis of a glycan precursor, or lipid linked oligosaccharide (LLO), and involves 

the coordinated function of at least 30 gene products and 17 enzymatic activities2,3. LLO 

synthesis is initiated in the cytosol through addition of N-acetylglucosamine to 

phosphorylated dolichol, an enzymatic step that is blocked by the natural product 

tunicamycin4 (see Supplementary Results, Supplementary Fig. 1 for a pathway overview). 

Sequential carbohydrate addition by glycosyltransferases associated with the cytosolic ER 

leaflet elongate the LLO. The resulting dolichol-linked Man5GlcNAc2 intermediate is then 

transferred into the lumen of the ER by a poorly understood mechanism5–7. Proteins that 

synthesize and transport carbohydrate precursors, along with glycosyltransferases of the ER 

lumen, add mannosyl and glucosyl residues to form the Glc3Man9GlcNAc2 LLO. This 

mature glycan is then transferred to NXT/S (where X cannot be P) consensus sequons of 

nascent proteins by the oligosaccharryltransferase (OST) enzyme complex8–10.

Although the biochemical basis for synthesis and transfer of N-linked glycans to recipient 

proteins has been largely elucidated, control of this process by mammalian cells is not well 

understood. N-linked glycosylation was initially considered to be constitutive without sites 

of regulation. This belief was based on two fundamental observations: (1) that many of the 

N-linked glycosylation genes are essential and (2) the prevalent use of tunicamycin which 

induces cell death. This concept, however, was incongruent with discoveries about the 

biology of the OST. Yeast genetics demonstrated that several of the OST subunits were in 

fact non-essential, requiring synthetic lethal strategies for identification11–13. Furthermore 

the single yeast OST catalytic subunit (STT3) was found to be encoded by two separate 

homologues in mammals, STT3A and STT3B, suggesting a mechanism for regulation of 

LLO transfer14,15. The hetero-oligomeric mammalian OST complexes are composed of a 

single copy of a catalytic subunit (either STT3A or STT3B), a shared set of at least five non-

catalytic subunits, plus catalytic subunit specific auxiliary subunits yielding multiple 

isoforms16–18. Thus the OST represents at least one enzymatic node for control of N-linked 

glycosylation and provides molecular evidence for a model where N-linked glycosylation 

itself can be actively regulated.

Another challenge for the field of glycobiology is the difficulty in attributing the 

consequences of abnormal N-glycan transfer in the ER to the altered function of specific 

glycoproteins. For example human congenital disorders of glycosylation have disparate 

clinical presentations and it has been difficult to identify either the specific proteins or the 

cellular contexts that are most sensitive to disruption of glycosylation19. It has been 

suggested by our group and others20–22 that receptor tyrosine kinase (RTK) glycoproteins 
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such as epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 

(FGFR) family members are sensitive to perturbations in N-glycosylation, and thus RTKs 

may mediate the effects of abnormal N-linked glycosylation. These receptors are the subject 

of intense study in oncology and have been identified in tumor subpopulations as drivers of 

‘oncogene addiction’, a cellular state where inhibition of the oncogene’s function also 

eliminates activity of the principal signaling pathways for proliferation23. Thus 

understanding the interplay between N-linked glycosylation and RTK function should 

provide new mechanistic insights on cellular sensitivity to glycosylation defects as well as 

identify novel approaches for targeted inhibition of RTK function.

The study of N-linked glycosylation in living cells would be significantly improved by the 

generation of chemical probes that disrupt the function of this biosynthetic pathway. 

Although peptidomimetics that block N-linked glycosylation have been developed24,25, cell 

permeability for these inhibitors remains a challenge. We therefore developed a tiered high 

throughput screening (HTS) methodology to identify small molecule inhibitors of protein N-

linked glycosylation. In the present study we report results from a screen of 358,301 

compounds, subsequent establishment of chemical structure activity relationships, and 

characterization of the biological target. We also investigate the effects of our newly 

discovered inhibitor in non-small cell lung cancer (NSCLC) cells to identify differential 

outcomes that are dependent upon cellular contexts of RTK signaling.

RESULTS

HTS for Inhibitors of N-linked Glycosylation

A HTS of 358,301 compounds from the National Institutes of Health Molecular Libraries 

Small Molecule Repository (MLSMR) was performed using a gain of function, cell-based 

assay for N-linked glycan site occupancy20,26. An overview of the HTS strategy including 

primary, secondary, and tertiary screening is presented in supplementary Figure 2. The 

primary screen was performed in duplicate and values were normalized to the average of 

positive control wells (tunicamycin) minus averaged vehicle treated wells per run. 

Compounds with replicate activity greater than three standard deviations above the mean 

average of control wells were selected for further study. A subset of 1,845 compounds met 

this criterion, and were advanced to simultaneous retesting in both the primary screen and a 

secondary (false positive) cell-based screen. A subset of 730 compounds were further 

advanced after demonstration of a 40% activating concentration (AC40) less than 10 μM and 

no activity in the secondary screen. Compounds were further triaged from consideration by 

consulting the Pubchem bioassay database and deprioritizing compounds showing a 

promiscuity rate higher than 5% across assays or by removing PAINS scaffolds27. 

Remaining compounds were assessed by medicinal chemistry review to score synthetic 

tractability and predicted issues with instability, poor solubility, or toxicity. This analysis 

yielded 39 compounds that were tested in a cell-free assay to detect luciferase inhibitors26,28 

and by western blot analysis to detect gel mobility changes of the luciferase reporter 

consistent with inhibition of N-linked glycosylation. This approach identified one 

aminobenzamidosulfonamide compound that blocked N-linked glycosylation.
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To better understand the connection between structure and activity, analogs were prepared 

and tested in the D54-ERLucT cell based assay for inhibition of N-linked glycosylation (Fig. 

1a). The assay was used to estimate and compare AC40 values and guide the design of 

additional compounds. This effort generated 36 unique compounds with modifications to the 

amine component of the sulfonamide functionality (red), the pyrrolidine moiety (blue) or the 

methylaminothiazole group (green; supplementary Note). Generally, incorporation of larger 

sulfonamides (i.e., larger secondary amines appended to the sulphone) was not well 

tolerated, resulting in erosion of potency (7 analogs). However, steric interactions could be 

mitigated by the introduction of a hydrogen bond accepting oxygen in a larger cyclic amine. 

Thus, morpholine was determined to be an acceptable surrogate for the dimethylamine 

component of the sulfonamide (Fig. 1a). The pyrrolidine group (blue) was replaced with 

various alkyl, cycloalkyl, and amine groups (7 compounds). The aminothiazole moiety was 

derivatized most extensively of all three regions (green highlighted area, 22 analogs). 

Elaboration or simplification of the thiazole itself was permitted, though any attempt to 

replace the thiazole with another heterocycle or substituted phenyl ring was inferior in terms 

of potency. The activity for all analogs is reported in supplementary Tables 1, 2 and 3. 

Analogs were also tested for toxicity in HepG2 and HEK293 cells using the Celltiter Glo 

viability assay after 72 h of compound exposure, and all analogs showed no cell toxicity 

liability (EC50 > 30 μM; suppl. Table 1–3). Analogs with the highest potency in the 

luciferase assay were retested with western blot analysis to ensure that measurements of 

luciferase activation corresponded to loss of N-linked glycosylation.

These efforts revealed a small molecule chemical probe with N-linked glycosylation 

inhibitory activity that lacked cell toxicity and we designate as N-linked Glycosylation 

Inhibitor-1 (NGI-1). Using dose response data for luciferase activity the AC50 (equivalent to 

IC50) of NGI-1 in intact D54 ER-LucT cells in culture was estimated to be 1.1 μM (Fig. 1b). 

Western blot analysis of NGI-1 treated cell cultures also demonstrated dose response loss of 

luciferase N-linked glycosylation that directly corresponds to the ~1 μM in vitro IC50 (Fig. 

1c; suppl. Fig 9). Notably, unlike tunicamycin, NGI-1 did not completely abolish all N-

linked glycosylation even at doses that were 25 times the estimated IC50. This distinctive 

inhibitory pattern suggested that NGI-1 has a different mechanism of action and likely a 

different cellular target from that of tunicamycin.

NGI-1 disrupts oligosaccharyltransferase function

To delimit the potential targets of NGI-1 we used glycosylation defective CHO Lec1529 and 

Lec3530 cells which have loss of DPM2 and MPDU1 function, respectively (suppl. Fig. 1), 

and synthesize truncated Man5GlcNAc2 LLOs. Stable cell lines expressing the ER-LucT 

were generated in both Lec15 and Lec35 to test the effect of NGI-1 and tunicamycin on N-

linked glycosylation. DPAGT1 (Dolichyl-phosphate N-Acetylglucosamine 

phosphotransferase 1), the target of tunicamycin, is active and tunicamycin-responsive in 

both cell lines (Fig. 2a; suppl. Fig. 9b). Similar to tunicamycin, NGI-1 caused instability of 

the luciferase reporter, indicating that the NGI-1 target was present in both cell lines. This 

data suggested that the target of NGI-1 is required for either synthesis of the Man5GlcNAc2 

LLO species or for its transfer to the target protein (but not for extension of Man5GlcNAc2 

to Glc3Man5GlcNAc2). To differentiate between these possibilities fluorophore assisted 
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carbohydrate electrophoresis (FACE) analysis was performed to determine the effect of 

NGI-1 on LLO synthesis (Fig. 2b). Tunicamycin was used as a positive control and blocked 

all LLO production, consistent with inhibition of the enzyme that catalyzes the first 

committed step in LLO synthesis. In contrast NGI-1 did not impair LLO synthesis, and 

actually increased Glc3Man9GlcNAc2 LLO by 31% (p <.01), suggesting that NGI-1 did not 

abrogate LLO synthesis but instead reduced LLO consumption. Coupled with decreased 

protein glycosylation, these results suggested that NGI-1 blocks the transfer of LLOs to 

recipient glycoproteins.

The OST is an ER resident, multi-subunit enzymatic complex that transfers oligosaccharides 

from LLO donors to acceptor protein sequons31. At a lesser rate the OST also cleaves LLOs 

and releases oligosaccharides as free glycans in the ER lumen. Both enzymatic products of 

OST, free glycans and N-glycans, were therefore analyzed with and without NGI-1 

treatment using streptolysin-O permeabilized CHO cells to facilitate access of OST substrate 

tripeptides (Fig. 2c). Addition of a control peptide without the N-linked glycosylation 

consensus sequence (QYT) led to readily detectable levels of free glycans (left panel), while 

addition of an acceptor peptide containing the consensus sequence (NYT) followed by 

PNGase treatment led to detection of glycans cleaved from N-linked glycopeptides (right 

panel). Since N-glycosylation and LLO hydrolysis are competing reactions of OST, the 

presence of NYT peptide reduced the production of free glycans. Using this experimental 

design NGI-1 was shown to substantially reduce the production of both OST products (free 

glycans and N-glycans), providing biochemical evidence that OST is the target of NGI-1. To 

isolate the activity of the OST, canine pancreas microsomes were used with in vitro 
translation of prosaposin (pSAP) mRNA to provide high concentrations of endogenous LLO 

substrate, OST enzyme, and a glycoprotein acceptor in a cell free system32. NGI-1 showed a 

dose dependent inhibition of pSAP N-linked glycosylation (Fig. 3a), demonstrating 

independence from de novo synthesis of LLOs, proteins, or other cellular factors and 

consistent with OST inhibition.

Mammalian genomes encode two isoforms of the OST catalytic subunit; STT3A and 

STT3B. Knockdown of each subunit has been shown to have specific effects on discrete N-

linked glycosylation sites15,33. For example, pSAP is known to have five sites that are 

blocked by STT3A knockdown alone, and sex hormone binding globulin (SHBG) is known 

to have two sites that are blocked by STT3B knockdown alone. Metabolic pulse labeling of 

pSAP and SHBG in HeLa cells shows that NGI-1 blocks both STT3A and STT3B 

dependent glycosylation sites (Fig. 3b). Furthermore, inhibition of site occupancy for both 

isoform specific sites is reversible, as omission of NGI-1 during the pulse labeling interval 

(20 minutes) restored N-linked glycosylation (Fig. 3c).

Although NGI-1 reduces glycosylation of both STT3A and STT3B dependent sites, the 

effect of NGI-1 on STT3A dependent sites appeared incomplete (Fig. 3b). Dose response 

analysis confirmed that while NGI-1 completely blocks LLO transfer to STT3B dependent 

sites (SHBG), it is less potent and incompletely blocks glycosylation of STT3A dependent 

sites (pSAP; Fig. 3d, suppl. Fig. 3a). This data suggests differential effects on OST 

complexes containing either the STT3A or STT3B catalytic subunit. To examine the 

interaction of NGI-1 with OST subunits, cellular thermal shift assays (CETSA) were 
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performed34. The results showed that NGI-1 stabilizes STT3B (Fig. 3e; suppl. Fig. 3b, 9c, 

9k), shifting the melting curve of the protein and providing direct evidence of target 

engagement. NGI-1 did not stabilize STT3A in this analysis, consistent with its partial effect 

on STT3A dependent glycosylation. Taken together these results provide strong evidence 

that NGI-1 is a reversible catalytic subunit inhibitor of the OST that has higher specificity 

for STT3B compared to STT3A.

NGI-1 blocks EGFR glycosylation and cell surface transport

The EGFR is a highly glycosylated transmembrane RTK protein with eleven consensus N-

linked glycosylation sites in the extracellular domain. This cell surface growth factor 

receptor has been identified as a key driver of proliferation and survival signaling in 

malignant tumors, and we therefore sought to investigate the consequences of NGI-1 

mediated OST inhibition on EGFR function. NGI-1 blocked EGFR N-linked glycosylation 

in lung adenocarcinoma cells as assessed by decreased molecular weight on SDS-PAGE 

(Fig. 4a; suppl. Fig. 9d). However, residual glycosylation was also indicated by gel mobility 

differences from that of PNGase treated controls or from samples where LLO synthesis was 

blocked with tunicamycin. This mobility difference was abolished by digestion of NGI-1 

treated samples with PNGase, confirming that NGI-1 treatment blocks the transfer of most, 

but not all, N-linked glycans to the EGFR.

N-linked glycosylation is a critical step for the quality control and trafficking of 

transmembrane glycoproteins like the EGFR. To determine the effect of NGI-1 on EGFR 

distribution within the cell, membrane impermeable biotin labeling of intact cells followed 

by streptavidin precipitation was performed (Fig. 4b; suppl. Fig. 9e). In controls EGFR was 

biotinylated, consistent with its plasma membrane expression, but in NGI-1 treated cells the 

EGFR was predominantly found in the non-biotinylated intracellular fraction suggesting a 

change in cellular localization. Confocal microscopy of EGFR (red) and the ER-resident 

protein calreticulin (CRT; green) was then undertaken in H3255 lung adenocarcinoma cells 

to define the effect of NGI-1 on EGFR localization (Fig. 4c). In controls EGFR 

immunofluorescence was discretely localized to the plasma membrane, however, 24 h of 

NGI-1 treatment caused a dramatic shift of the EGFR to an intracellular compartment 

without altering the cellular localization of CRT. Colocalization of EGFR and CRT was then 

quantified using Image J Colormap Software (Fig. 4d) and showed a significantly increased 

positive correlation for signal association (p<.05). Identical results were observed for the 

HCC-827 NSCLC line (suppl. Fig. 4; suppl. Fig. 4e). Together these results suggest that 

OST inhibition with NGI-1 blocks EGFR trafficking to the cell surface, and that hypo-

glycosylated receptors are retained in the ER and secretory pathway.

A glycoproteomic analysis was also performed to screen for differential effects of NGI-1 on 

glycoprotein glycosylation and localization. This approach identified 16 partially 

glycosylated proteins expressed at the cell surface, several of which were integrins, and 

contained both NGI-1 sensitive and insensitive glycosylation sites (suppl. Table 4). To 

confirm this result, the effect of NGI-1 on Integrin B1 (ITB1) glycosylation and localization 

was further examined. NGI-1 treatment significantly reduced ITB1 glycosylation after 

extended treatment (48 h; Fig. 4e; suppl. Fig. 9f), but unlike the EGFR, hypo- glycosylated 
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ITB1 was found in the cell surface biotinylated fraction and also visualized at the cell 

surface with confocal microscopy (Fig. 4f). These results demonstrate differential effects of 

NGI-1 on individual proteins and imply that NGI-1 does not generally block the transport of 

cell surface receptors through the secretory pathway but rather alters trafficking of specific 

proteins.

NGI-1 blocks proliferation of RTK dependent NSCLC

Mutation of the EGFR kinase domain (KD) is present in approximately 10% of lung 

adenocarcinomas in western populations35,36. This mutation increases EGFR tyrosine kinase 

activity, drives tumorigenesis, and produces tumors that are dependent, or ‘addicted’, to RTK 

signaling for proliferation37. Because NGI-1 reduces EGFR glycosylation and localization, 

the effects of this inhibitor on EGFR-dependent signaling were also examined. NGI-1 

blocked phosphorylation of KD mutant EGFR in PC9 cells after treatment for 1 day (Fig. 

5a; suppl. Fig. 9g)), and after 3 days reduced subsequent cell proliferation by more than 90% 

in MTT assays (p <.001; Fig. 5b). In contrast the A549 cell line, which harbors a 

downstream activating KRAS mutation (G12S), continued to proliferate after NGI-1 

exposure (Fig. 5c) despite effective blockade of EGFR glycosylation (Fig 5a). H3225 and 

HCC-827, two additional cell lines with EGFR KD mutations, were also found to be 

sensitive to NGI-1 treatment (suppl. Fig. 5a,b), demonstrating the sensitivity of this 

phenotype to NGI-1 treatment. Importantly the results with NGI-1 are in contrast to those 

obtained with tunicamycin which immediately blocks proliferation in both cell lines (Fig 

5b,c).

To assess the effects of NGI-1 on cellular signaling, phospho-protein levels of 43 signaling 

proteins were determined on arrays (Fig. 5d, suppl. Fig. 6a) and are quantified in 

supplementary Figure 6b. Inhibition of EGFR activation by NGI-1 globally reduced 

phosphorylation of both kinases and effectors of downstream proliferative signaling in PC9 

cells, however, only subtle quantitative effects on these phospho-proteins were observed in 

A549 cells (Fig. 5d; suppl. Fig. 6b). Significant reductions in phosphorylation of EGFR 

(Y1068; B2), Akt (T308; B6), p70 S6K (T421/424; D6), Src (Y419; D1), and CREB (S133; 

C2) suggests that NGI-1 effectively blocks oncogenic signaling from this transmembrane 

glycoprotein, but has only a minor effect on oncogenic signaling in other cell contexts such 

as the A549 cells.

The effects of NGI-1 were then compared in two additional lung cancer cell lines; H1581 

and H2444. Both of these cell lines are characterized by FGFR amplification, but only 

H1581 are FGFR1-dependent and sensitive to inhibition with FGFR specific tyrosine kinase 

inhibitors38. NGI-1 treatment enhanced FGFR mobility on PAGE, consistent with inhibition 

of N-linked glycosylation, and also blocked FGFR1 phosphorylation (Fig. 5e; suppl. Fig. 

9h). The multiple bands on western blot represent glycoforms of alternative splice products 

in the third immunoglobulin domain. Consistent with dependence on FGFR signaling, 

NGI-1 blocked proliferation of the H1581 cell line but not that of H2444 cells (Fig. 5f,g). 

Together these results show that NGI-1 has potent inhibitory effects on cell types where 

proliferative signaling is driven by RTK glycoproteins.
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NGI-1 induces senescence in RTK dependent lung cancer

To determine the underlying mechanism for the proliferative changes in RTK driven lung 

cancer cells after inhibition of N-linked glycosylation with NGI-1, cell cycle and apoptosis 

were assessed in the PC9 and A549 cell lines. Treatment of both NSCLC cell lines with 

NGI-1 for 2 or 5 days did not induce apoptosis, though apoptosis was activated by 

tunicamycin treatment in both cell lines (suppl. Fig. 7a,b). NGI-1 also induced a similar ER 

stress response in both cell lines indicated by induction of GRP78/BiP protein expression 

(suppl. Fig. 7c; suppl. Fig. 9l). Analysis of cell cycle distribution by flow cytometry 

demonstrated a significant increase in G1 for NGI-1 treated PC9 (65% vs 90% p<.01; Fig. 

6a; suppl. Fig. 8a), H3225 (55% vs 80% p<.05; suppl. Fig. 8c) and HCC-827 (50% vs 75% 

p<.01; suppl Fig. 8d) cells after 24 h, but did not significantly change the cell cycle 

distribution of A549 cells (Fig. 6b; suppl. Fig. 8b). A G1 arrest was also seen after NGI-1 

treatment in H1581 cells (55% vs 80% p<.05) but not in H2444 cells (suppl. Fig. 8 e,f). 

Additionally, a sub-G1 peak, which can be observed with induction of apoptosis, was not 

present in NGI-1 treated PC9 cells, providing further evidence that these cells do not 

undergo apoptosis. Consistent with the observed G1 cell cycle arrest in PC9 cells, cyclin D1 

was reduced at both the mRNA (40% ± 15%, p<.01) and protein levels in PC9 cells, but not 

significantly affected in A549 cells (Fig. 6c,d; suppl. Fig. 9i).

Protein levels of p21 were also analysed in PC9 cells and found to increase within 24 h after 

NGI-1 treatment (Fig. 6e; suppl. Fig. 9j). This protein is a cell cycle regulator and marker for 

senescence, raising the possibility that inhibition of N-linked glycosylation with NGI-1 

could preferentially induce senescence. We therefore assessed for additional hallmarks of 

senescence in PC9 and A549 NSCLC cells following control or NGI-1 treatment for 5 days 

(Fig. 6f,g). In PC9 cells we found increased autofluorescence by flow cytometry (60.4% 

± 7.5%, p<.05), fluorescent aggregates consistent with lipofuscin accumulation by 

microscopy, and cell morphology changes characterized by enlarged and flattened cells (Fig. 

6f). In comparison none of these changes were detected in A549 cells (Fig. 6g). Together 

these results provide strong evidence that inhibition of N-linked glycosylation induces cell 

cycle arrest and senescence in tumor cells with RTK driven oncogenic signaling.

DISCUSSION

In this work we report the results of a successful HTS campaign and the identification of an 

aminobenzamidosulfonamide chemical series that blocks N-linked glycosylation. NGI-1, the 

lead compound from this series, alters the enzymatic reaction of glycosylation per se, 

causing a marked reduction of protein N-linked glycosylation and accumulation of lipid 

linked glycan precursors. NGI-1 reduces N-linked glycosylation through a direct and 

reversible interaction with the catalytic subunit of the OST. However, because mammalian 

cells encode two mutually exclusive OST catalytic subunits (STT3A and STT3B), and 

NGI-1 only partially blocks the STT3A subunit, the overall effect of NGI-1 is incomplete 

inhibition of glycosylation.

The incomplete inhibition of N-linked glycosylation provides a reasonable explanation for 

the reduced cellular toxicity of NGI-1 compared to the nucleoside antibiotic, tunicamycin. 

Tunicamycin completely blocks enzymatic activity of DPAGT1 and eliminates the 
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production of all lipid linked glycan precursors and all N-linked glycosylation, leading to 

apoptosis and cell death in virtually all cell types. The diminished effects of NGI-1 are 

therefore more similar to the aberrant glycosylation seen in congenital disorders of 

glycosylation (CDG), a group of diseases with reduced N-linked glycosylation efficiency 

that are most often caused by hypomorphic alleles of enzymes required for glycosylation. 

CDGs and animal models of these diseases are characterized by a range of developmental 

abnormalities, but these enzymatic deficiencies may have only subtle effects after embryonic 

development is complete39.

In NSCLC cells, we found that NGI-1 has its greatest effects on tumor phenotypes that are 

dependent, or ‘addicted’, to RTK glycoproteins. RTK extracellular domains are highly 

glycosylated, and N-linked glycans contribute to the stable receptor conformations that 

facilitate cell surface expression, ligand binding, and regulation of downstream signal 

transduction21. We show that proliferation of RTK-dependent NSCLC tumor cells is blocked 

(PC9, HCC-827, H3255, H1581) while proliferation of other NSCLC cells without RTK 

driven signaling is NGI-1 insensitive (A549, H2444). In agreement with this data, and 

despite the observation that RTK glycosylation was reduced in all cell lines, the inhibitory 

effects of NGI-1 on downstream signaling proteins that regulate proliferation40–42 were only 

pronounced in RTK-dependent lines. Finally, NGI-1 also caused a G1 arrest and the 

appearance of several hallmarks of senescence in only the RTK-dependent NSCLC lines. 

Together this data argues that RTK driven cell signaling is particularly sensitive to OST 

inhibition with NGI-1. However, although standard profiling for off-target effects43 was 

negative (suppl. Table 5), the possibility that NGI-1 has other cellular targets cannot be 

definitively excluded at this time. Nevertheless, the sensitivity of RTK dependent tumor 

phenotypes to NGI-1 treatment suggests that strategies to target N-linked glycosylation 

could prove useful as a therapeutic approach for treating RTK driven malignancies.

In summary, we introduce a new potent and cell permeable small molecule inhibitor of N-

linked glycosylation. NGI-1 has a unique biologic activity; it blocks the transfer of mature 

glycan precursors to recipient proteins. NGI-1 and its analogs also display reduced cellular 

toxicity compared to tunicamycin and thus in addition to providing a new chemical probe for 

advancing basic science research in glycobiology, they may also enable new biotechnology 

approaches for regulating protein N-linked glycosylation in mammalian cells.

ONLINE METHODS

Cell lines and culture conditions

The H3255, H1581, H2444, HEK293T, and HepG2 cell lines were purchased from the 

ATCC (Rockville, MD). The PC9 cell line was a gift from Katie Politi, the A549 cell line 

was a gift from Abhi Patel (both Yale University, New Haven CT), and the HCC-827 line 

was a gift from Jeff Engelman (MGH, Boston Mass). Glycosylation defective CHO Lec1529 

and Lec3530 cells which have loss of DPM2 (dolichyl-phosphate mannosyltransferase-2) 

and MPDU1 (Mannose-P-Dolichol Utilization Defect 1) function have been previously 

described. Cells were maintained in RPMI media supplemented with 10% FBS and pen/

strep at 37 °C in a humidified incubator with 5% CO2.
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High Throughput Screening

The HTS approach using the bioluminescent N-linked glycosylation reporter in D54-

ERLucT and D54-LucT cells has been previously described26. Briefly, the primary cell-

based screen detects N-linked glycan site occupancy using a modified and ER translated 

luciferase protein with three N-linked glycosylation consensus sequons. Inhibition of 

glycosylation in D54-ERLucT restores and increases luciferase activity over controls 

whereas it does not increase activity in the non-ER translated D54-LucT cell line. The 

methodology for the primary (D54-ERlucT), secondary false positive (D54-LucT), and 

tertiary (luciferase inhibition) screens as well as toxicity assays with CellTitre Glo are 

deposited in Pubchem (AID 588693). Genedata Screener software with the Smartfit 

algorithm was used for to generate AC40 values for comparative analysis of analogs.

LLO, Protein, and RNA Detection

Fluorophore assisted carbohydrate electrophoresis (FACE) was performed as previously 

described44,45. Control (Ac-Gln-Tyr-Thr-CONH2) and acceptor (Ac-Asn-Tyr-Thr-CONH2) 

peptides were used for permeabilized cell experiments. Metabolic labeling of HeLa cells, 

transfection of prosaposin (pSAP) and sex hormone binding globulin (SHBG) vectors, and 

knockdown of STT3A and STT3B to monitor N-linked glycosylation knockdown were 

performed as described33. Cellular Thermal Shift Assays (CETSA) were performed as 

described34. Briefly, cells were treated with 100 μM NGI-1 for 30 min and then harvested 

and resuspended in complete DMEM medium supplemented with 100 μM NGI-1. 

Resuspended cells were subjected to thermal treatment for 3 min, lysed, and the soluble 

protein fraction was analyzed by western blot. Western blot analysis was performed as 

previously described26. The following primary antibodies were used: rabbit anti-STT3B 

(Proteintech; 1:1000), rabbit anti-STT3A (Proteintech; 1:1000), rabbit anti-RPN1 

(Proteintech; 1:800), rabbit anti-RPN2 (Bethyl Lab; 1:4000), rabbit anti-OST48 

(Proteintech; 1:1000), rabbit anti-DAD1 (a gift from Stephen High University of 

Manchester; 1:2500), rabbit anti-EGFR (sc-03; Santa Cruz Biotechnology; 1:1,000), rabbit 

anti-phospho (Tyr1173) EGF Receptor (Cell Signaling; 1:1,000), rabbit anti-B1-Integrin 

(M-106; sc-8978; Santa Cruz Biotechnology; 1:1000), rabbit anti-p21 Waf1/Cip1 (12D1; 

Cell Signaling; 1:1,000), rabbit anti-Cyclin D1 (Cell Signaling; 1:1,000), mouse anti-β-

Actin (8H10D10; Cell Signaling; 1:1,000); rabbit anti-FGF Receptor 1 (D8E4, Cell 

Signalling; 1:1,000); rabbit anti-phospho FGF Receptor (Tyr653/654) (Cell Signaling; 

1:3,000), anti-GADPH (Proteintech; 1:5000), rabbit anti-BIP (Cell Signaling; 1:1,000).

For phospho-protein array analysis, PC9 and A549 cells were cultured in 6-well plates in 

serum-containing medium and treated with or without 10 μM NGI-1 for 24 hours. The 

human Phospho-protein array kit (R&D Systems) was used to simultaneously detect the 

relative site-specific phosphorylation of 43 kinases and 2 related total proteins according to 

the manufacturer’s protocol.

Biotinylation and recovery of cell surface proteins were performed on intact H3255 cell 

monolayers using EZ-link Sulfo-NHS-SS Biotin (Pierce) and isolated using streptavidin-

agarose beads (Sigma-Aldrich). Control or cells treated with 10 μM NGI-1 for 24 h were 

placed on ice and washed three times with PBS. The cells were incubated with EZ-link 
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Sulfo-NHS-SS-Biotin at a final concentration of 0.5 mg/ml in PBS for 60 min at 4 °C, 

followed by 100 mM glycine/PBS wash, and two washes with PBS. Biotinylated cells were 

scraped into lysis buffer (25 mM Tris-HCl pH 7.4, 10 mM EDTA, 15% glycerol, 0.1% 

Triton X-100, protease inhibitor tablet (Roche Diagnostics; Indianapolis, IN, USA) and 

phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich)) and agitated on a shaker for 60 min 

at 4 °C. The cell lysate was centrifuged for 10 min at 14,000 × g, and the resulting 

supernatant was incubated with streptavidin-agarose beads, suspended in lysis buffer, and 

mixed at 4 °C overnight. The beads were recovered by centrifugation (5,000 × g for 15 s) 

and aliquots of supernatants were taken to represent the unbound, intracellular pool of 

proteins. Biotinylated proteins were eluted from the beads by heating to 100 °C for 5 min in 

SDS-PAGE sample buffer before loading onto a 7.5% SDS-PAGE gel for western blot 

analysis against EGFR or ITB1.

For PNGase digestion 10 μg lysate were digested with peptide N-glycosidase F (PNGase-F, 

New England Biolabs, Beverly, MA). Specifically, samples were incubated in denaturing 

buffer (0.5% SDS and 1% β-mercaptoethanol) for 10 min at 100 °C and brought to 50 mM 

sodium phosphate (pH 7.5) with 1% Nonidet P-40. Then, 1 μl (500 units) of PNGase-F was 

added and incubated for 1 h at 37 °C. After glycosidase digestion, SDS-PAGE sample buffer 

was added and incubated at 100 °C for 5 min. Equal amounts of non-digested and digested 

PNGase-F proteins were subjected to SDS-PAGE and western blot analysis for EGFR.

For Quantitative RT-PCR A549 and PC9 cells were seeded in 6 cm dishes, after NGI-1 

treatment total mRNA purification was performed using the RNeasy Mini Kit (QIAGEN) 

and reverse transcribed into cDNA using iScript™ cDNA Synthesis Kit (BIO-RAD) 

according to the manufacturer’s protocol. The newly synthesized cDNA was amplified using 

iQ™ SYBR® Green QPCR Supermix (Agilent Technologies) and expression levels of 

human Cyclin D1 and human GAPDH mRNA were determined using these specific primers: 

Cyclin D1 forward: 5′-ACCTGAGGAGCCCCAACAA-3′; reverse: 5′-
TCTGCTCCTGGCAGGCC-3′. GAPDH forward: 5′-GCTCTCTGCTCCTCCTGTTC-3′; 
reverse: 5′-ACGACCAAATCCGTTGACTC-3′. The incubation conditions were as follows: 

1 cycle at 95°C for 10 min, followed by 40 cycles of 30 sec at 95°C, annealing for 15 sec at 

55°C, and extension for 30 sec at 72°C. PCRs for each sample were done in triplicate for all 

the genes.

Microscopy

For immunofluorescence, H3255 cell lines were grown on glass coverslips to 70% 

confluence. Cell cultures were washed with PBS and fixed with 4% (w/v) formaldehyde in 

PBS for 30 min at 37°C. After washing with PBS, cells were permeabilized with 0.1% v/v 

Triton X-100 in PBS for 10 min, rinsed three times in PBS and treated with 5% w/v bovine 

serum albumin for 1 h. Cells were then incubated overnight at 4°C with either rabbit anti-

EGFR pAb (sc-03; Santa Cruz Biotechnology; 1:2,000), mouse anti-CRT mAb (BD 

Transduction Laboratories™; 1:1,000) or mouse anti-B1-Integrin mAb (MAB2253; 

Millipore; 1:500) primary antibodies and for 1 h at room temperature with either Alexa 

Fluor 543-conjugated goat anti-rabbit IgG or Alexa Fluor 488-conjugated goat anti-mouse 

IgG (ThermoFisher Scientific; 1:1,000) secondary antibodies. All antibodies were diluted in 
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PBS containing 5% w/v bovine serum albumin. Nuclei were stained using ToPro3 

(Invitrogen). Confocal cellular images were captured with an inverted Zeiss LSM 510 Pascal 

laser confocal microscope (Carl Zeiss, Jenna, Germany), using a 63/1.4 Plan-Apochromat 

objective. Quantification of colocalization was performed using Image J Colormap Software.

Glycomics

Cells were surface biotinylated as described above and the lysate was mixed with 2x sample 

loading buffer containing 50 mM of DTT and boiled for 5 min. The boiled samples were 

separated by SDS-PAGE (BioRad TGX MiniProtean) for 10 min at 200 V. Each lane of the 

gel was cut and denatured by incubating with 10 mM of DTT at 56 °C for an hour, alkylated 

by 55 mM of iodoacetamide for 45 minutes in the dark, and then digested with trypsin at 

37 °C overnight. The resulting peptides were extracted, dried and deglycosylated by 

PNGasF (ProZyme) at 37 °C overnight in the presence of H2
18O (Cambridge Isotope 

Laboratories, Inc.). The deglycosylated peptides were then dried and reconstituted in 0.1% 

formic acid. The peptides were separated on a 75 μm (I.D.) × 15 cm C18 capillary column 

(packed in house, YMC GEL ODS-AQ120ǺS-5, Waters) and eluted into the nano-

electrospray ion source of an Orbitrap Fusion™ Tribrid™ mass spectrometer (Thermo Fisher 

Scientific) with a 180-min linear gradient consisting of 0.5–100% solvent B over 150 min at 

a flow rate of 200 nL/min. The spray voltage was set to 2.2 kV and the temperature of the 

heated capillary was set to 280 °C. Full MS scans were acquired from m/z 300 to 2000 at 

120k resolution, and MS2 scans following collision-induced fragmentation were collected in 

the ion trap for the most intense ions in the Top-Speed mode within a 3-sec cycle using 

Fusion instrument software (v1.1, Thermo Fisher Scientific). The raw spectra were searched 

against the human protein database (UniProt, Oct. 2014) using SEQUEST (Proteome 

Discoverer 1.4, Thermo Fisher Scientific) with full MS peptide tolerance of 20 ppm and 

MS2 peptide fragment tolerance of 0.5 Da, and filtered using ProteoIQ (v2.7, Premier 

Biosoft) to generate a false discovery rate of 1% at protein level and 5% at peptide level for 

any protein/peptide assignments.

Proliferation assays

Growth rates were determined by CellTiter 96 NonRadioactive Cell Proliferation Assay 

(Promega; Madison, WI, USA) according to the manufacturer’s directions. Briefly, NSCLC 

cells (2×103) untreated or treated with 10 μM NGI-1 or 1 μM Tn, were seeded in triplicates 

in 96-wells plates and grown in culture medium containing 10% serum. The media was 

changed with our without new inhibitor every 48h. Cell numbers were estimated after 0, 3, 

and 5 days by adding MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

reagent to the wells 4 h before taking the spectrophotometric reading (absorbance at 570 

nm).

Cell cycle distribution

For the assessment of cell cycle distribution, 1 × 106 cells were collected, washed once with 

ice-cold PBS and fixed in ice-cold 70% ethanol overnight at −20°C. Thereafter, cells were 

washed twice with PBS and incubated for 30 min at room temperature in 200 μL of Guava 

Cell Cycle Reagent (Guava Technologies). Cytofluorometric acquisitions were performed on 

a LSRII cytometer (BD Biosciences). First-line analysis was performed with Flow Jo 
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software, upon gating of the events characterized by normal forward and side scatter 

parameters and discrimination of doublets in a FSC-A vs. FSC-H bivariate plot. 

Approximately 30,000 cells were analyzed per experiment, and the mean value was obtained 

from 3 independent assays.

Assessment of senescence

Autofluorescence of PC9 and A549 cells untreated or treated with 10 μM NGI-1 for 24 h 

was characterized by flow cytometry after fixing the cells with 70% ethanol, staining with 

4,6-diamino-2-phenyl indole (DAPI) for 30 min. Acquisition was done on a LRSII flow 

cytometer (BD Biosciences) equipped with green (532 nm) and UV (405nm) lasers and 

measured by emission at 575 nm after gating with DAPI. Lipofuscin accumulation was 

detected by confocal laser scanning microscopy using an excitation laser of 405nm with 

acquired signals from spectrums of yellow 575–620 nm. Morphology changes were explored 

by differential interference contrast (DIC). Fluorescence and DIC images were captured with 

a Leica SP5 confocal microscope.

Statistics

Data points are reported as experimental averages and error bars represent standard 

deviations of at least three independent experiments. No samples were excluded from the 

analysis. Statistical significance was determined using a two-sided Student’s t test with 

Graph-Pad Prism 6 (GraphPad Software Inc.). A P value < 0.05 or less was considered to be 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HTS for inhibitors of N-linked glycosylation
a. Structure activity relationships (SAR) for the aminobenzamidosulfonamide series. The 

AC40 values for each analog are derived from the SmartFit algorithm for replicate 

experiments (n=2–6; see suppl. Tables 1–3) and are reported for comparison. b. Dose 

response activation of D54 ERLucT cells, maximum activation using 20 μM NGI-1 was 

used to calculate AC50. Results are the average of n=4 experiments. c. Representative dose 

response inhibition of luciferase glycosylation by western blot (n=3) (Suppl. Fig. 9a). 

Glycoforms are identified as 0–3n.
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Figure 2. NGI-1 blocks LLO transfer and hydrolysis
a. Western blots of glycosylated luciferase in CHO-Lec15 and CHO-Lec35 cells with stable 

expression of ER-LucT after 24 h treatment with 1 μM tunicamycin (Tn) and 10 μM NGI-1 

(Suppl. Fig. 9b). b. Representative FACE analysis of LLOs after NGI-1 or Tn treatment in 

wild type CHO cells (n=3). G3M9 indicates the size of the mature LLO containing 3 glucose 

and 9 mannose carbohydrate units. c. Representative FACE analysis of free glycans (n=2) or 

cleaved N-linked glycans (n=2) from Streptolysin-O permeabilized CHO cells incubated 

with a control peptide (QYT) or an N-linked glycosylation consensus acceptor peptide 

(NYT). The effects of NGI-1 (5 μM) on free glycans (left panel) and N-linked glycans 

cleaved from glycopeptides with PNGase (right panel) are shown. Carbohydrate size is 

indicated with glucose markers (G4–G7).
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Figure 3. NGI-1 blocks OST function
a. Cell free inhibition of the OST using 35S metabolic labeling in rabbit reticulocyte lysates 

supplemented with canine pancreas rough microsomes. Saposin-DDK-His6 mRNA was 

translated for 60 min in the presence of NGI-1 or Tn. b–d. 35S labeling of pSAP and SHBG 

in HeLa cells after 10 μM NGI-1 treatment. b. Results from NGI-1 are compared to siRNA 

knockdown of STT3A or STT3B. Glycoforms are represented by 0–5n and 0–2n, 

respectively, and the average number of glycans per sample is reported for each condition. 

NC= non-coding siRNA, EH= endoglycosidase H treated. c. HeLa cells were treated with or 

without NGI-1 for 24 h prior to addition of the 35S label, during labeling, or both to 

demonstrate reversibility of the inhibitor. d. Dose response of NGI-1 effect on pSAP and 

SHBG glycosylation expressed in HEK293 cells e. CETSA for subunits of the OST in 293T 

cells treated with and without 100 μM NGI-1 for 30 min (Suppl. Fig. 9c). The �� denotes no 

thermal treatment. Each panel is representative of two independent experiments.
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Figure 4. NGI-1 disrupts EGFR glycosylation and cell surface expression
a. Western blot of EGFR treated with 10μM NGI-1 for 24h; molecular size shifts are 

compared to PNGase digestion and tunicamycin (Tn) treatment (Suppl. Fig. 9d). b. Surface 

protein biotinylation and streptavidin precipitation to compare EGFR localization in plasma 

membrane and cytoplasmic fractions (Suppl. Fig. 9e). c. Confocal microscopy and 

immunofluorescence of EGFR protein (red) and CRT (green) with nuclear ToPro3 

counterstain (cyan). d. Quantification of EGFR and CRT colocalization; color scale displays 

positive (red/yellow) or negative (blue/green) correlations. Colocalization was calculated by 

averaging the data obtained from 10 different fields of two independent experiments. Data 

are represented as mean ± s.d., p values were determined using two-tailed t-tests. *P < 0.05. 

ITB1 localization after 10μM NGI-1 for 48 h analyzed by (e.) surface biotinylation (Suppl. 
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Fig. 9f) (f.) confocal microscopy (green). Results for each panel are representative of at least 

three independent experiments unless otherwise noted. Scale bars, 10 μm.
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Figure 5. NGI-1 blocks RTK driven proliferation
a. EGFR phosphorylation (Y1173) and gel mobility in PC9 and A549 NSCLC cells after 

10μM NGI-1 treatment for 24 h (Suppl. Fig. 9g). Arrows indicate changes in glycoforms. b–
c. Fold proliferation measured by MTT over 5 days with 10μM NGI-1 or 1μM tunicamycin 

treatment. d. Phospho-protein array profiles of PC9 cells with or without 10μM NGI-1 for 

24 h. Duplicate phosphoprotein intensities are labeled with a coordinate system (e.g. B2 

represents EGFR phosphorylation; see suppl. Fig. 6b for phospho-protein quantification). 

NGI-1 has global effects on signaling protein phosphorylation in PC9 cells (compare (d.) left 

and right panels) but not A549 cells (compare suppl. Fig. 6a.) left and right panels) e. FGFR 

phosphorylation (Y653/654) and gel mobility for H1581 and H2444 NSCLC cell lines 

(Suppl. Fig. 9h). f–g. MTT assays for H1581 and H2444 cells treated with 10μM NGI-1 for 

5 d. Data are represented as mean ± s.d., n = 3. P values were determined using two-tailed t-
tests. *P < 0.001.
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Figure 6. NGI-1 induces G1 arrest and senescence in EGFR addicted tumor cells
a–b. Flow cytometry and cell cycle distribution of PC9 and A549 cells after NGI-1 treatment 

for 24 h. Data are represented as mean ± s.d., n = 3. P values were determined using two-

tailed t-tests. **P < 0.01, ns, not significant. c. mRNA levels of cyclin D1 gene were 

determined by qRT-PCR using SYBR Green and normalized to GAPDH. Data are 

represented as mean ± s.d., n = 4. P values were determined using two-tailed t-tests. **P < 

0.05 or **P < 0.01. Representative western blot for d. Cyclin D1 protein (n=3), and (Suppl. 

Fig. 9i) e. p21 induction (n=3) in PC9 and A549 cells (Suppl. Fig. 9j). f–g. Senescence 

determined by flow cytometry analysis of autofluorescence at 575 nm (panel 1; n=4), 

confocal laser scanning microscopy using 405/575–620 nm excitation and emission spectra 

(panel 2; n=3), and morphology changes (panel 3,4; n=3).

Lopez-Sambrooks et al. Page 22

Nat Chem Biol. Author manuscript; available in PMC 2017 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	RESULTS
	HTS for Inhibitors of N-linked Glycosylation
	NGI-1 disrupts oligosaccharyltransferase function
	NGI-1 blocks EGFR glycosylation and cell surface transport
	NGI-1 blocks proliferation of RTK dependent NSCLC
	NGI-1 induces senescence in RTK dependent lung cancer

	DISCUSSION
	ONLINE METHODS
	Cell lines and culture conditions
	High Throughput Screening
	LLO, Protein, and RNA Detection
	Microscopy
	Glycomics
	Proliferation assays
	Cell cycle distribution
	Assessment of senescence
	Statistics

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

