94 research outputs found

    Rhyolitic tephra horizons in northwestern Europe and Iceland from the AD 700s-800s: a potential alternative for dating first human impact

    Get PDF
    The distribution and geochemistry of four rhyolitic tephra horizons from Iceland dated to the ad 700s–800s is assessed. These include the rhyolitic phase of the Landnám tephra (ad 870s), the ad 860 layer, a previously unrecorded tephra called the GA4–85 layer (c. ad 700–800) and the Tjïrnuvík tephra (c. ad 800s). The ad 860 and GA4–85 layers were first found in peat bogs in north Ireland. They are here correlated with equivalent horizons on Iceland which were found below the Landnám tephra (c. ad 870s). This time period is considered important in the North Atlantic region, because it coincides with a phase of human settlement in Iceland and the Faroe Islands. The establishment of a detailed tephrochronology may provide a tool for exact dating of sediment successions and sediments associated with archaeological excavations. Caution must be taken especially on Iceland where the Landnám tephra is often used for dating archaeological sites. This investigation show that several rhyolitic tephra horizons occur close in time to the Landnám tephra, and that mistakes can be made if detailed geochemical analyses are not carried out, especially in areas which are distal to the source of the Landnám tephra (the Veidivötn and Torfajökull volcanic systems, southern Iceland)

    Polygenic Risk Score, Parental Socioeconomic Status, Family History of Psychiatric Disorders, and the Risk for Schizophrenia: A Danish Population-Based Study and Meta-analysis

    Get PDF
    IMPORTANCE: Schizophrenia has a complex etiology influenced both by genetic and nongenetic factors but disentangling these factors is difficult. OBJECTIVE: To estimate (1) how strongly the risk for schizophrenia relates to the mutual effect of the polygenic risk score, parental socioeconomic status, and family history of psychiatric disorders; (2) the fraction of cases that could be prevented if no one was exposed to these factors; (3) whether family background interacts with an individual's genetic liability so that specific subgroups are particularly risk prone; and (4) to what extent a proband's genetic makeup mediates the risk associated with familial background. DESIGN, SETTINGS, AND PARTICIPANTS: We conducted a nested case-control study based on Danish population-based registers. The study consisted of 866 patients diagnosed as having schizophrenia between January 1, 1994, and December 31, 2006, and 871 matched control individuals. Genome-wide data and family psychiatric and socioeconomic background information were obtained from neonatal biobanks and national registers. Results from a separate meta-analysis (34,600 cases and 45,968 control individuals) were applied to calculate polygenic risk scores. EXPOSURES: Polygenic risk scores, parental socioeconomic status, and family psychiatric history. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs), attributable risks, liability R2 values, and proportions mediated. RESULTS: Schizophrenia was associated with the polygenic risk score (OR, 8.01; 95% CI, 4.53-14.16 for highest vs lowest decile), socioeconomic status (OR, 8.10; 95% CI, 3.24-20.3 for 6 vs no exposures), and a history of schizophrenia/psychoses (OR, 4.18; 95% CI, 2.57-6.79). The R2 values were 3.4% (95% CI, 2.1-4.6) for the polygenic risk score, 3.1% (95% CI, 1.9-4.3) for parental socioeconomic status, and 3.4% (95% CI, 2.1-4.6) for family history. Socioeconomic status and psychiatric history accounted for 45.8% (95% CI, 36.1-55.5) and 25.8% (95% CI, 21.2-30.5) of cases, respectively. There was an interaction between the polygenic risk score and family history (P = .03). A total of 17.4% (95% CI, 9.1-26.6) of the effect associated with family history of schizophrenia/psychoses was mediated through the polygenic risk score. CONCLUSIONS AND RELEVANCE: Schizophrenia was associated with the polygenic risk score, family psychiatric history, and socioeconomic status. Our study demonstrated that family history of schizophrenia/psychoses is partly mediated through the individual's genetic liability

    The stability of educational achievement across school years is largely explained by genetic factors.

    Get PDF
    Little is known about the etiology of developmental change and continuity in educational achievement. Here, we study achievement from primary school to the end of compulsory education for 6000 twin pairs in the UK-representative Twins Early Development Study sample. Results showed that educational achievement is highly heritable across school years and across subjects studied at school (twin heritability ~60%; SNP heritability ~30%); achievement is highly stable (phenotypic correlations ~0.70 from ages 7 to 16). Twin analyses, applying simplex and common pathway models, showed that genetic factors accounted for most of this stability (70%), even after controlling for intelligence (60%). Shared environmental factors also contributed to the stability, while change was mostly accounted for by individual-specific environmental factors. Polygenic scores, derived from a genome-wide association analysis of adult years of education, also showed stable effects on school achievement. We conclude that the remarkable stability of achievement is largely driven genetically even after accounting for intelligence

    Identification of Common Genetic Variants Influencing Spontaneous Dizygotic Twinning and Female Fertility.

    Get PDF
    Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.Support for the Netherlands Twin Register was obtained from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193,480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007); Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB; European Research Council (ERC-230374 and ERC-284167); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1). Part of the genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951). We acknowledge support from VU Amsterdam and the Institute for Health and Care Research (EMGO+). The Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). Dale R. Nyholt was supported by the Australian Research Council (ARC) Future Fellowship (FT0991022), NHMRC Research Fellowship (APP0613674) Schemes and by the Visiting Professors Programme (VPP) of the Royal Netherlands Academy of Arts and Sciences (KNAW). Allan F. McRae was supported by an NRMRC Career Development Fellowship (APP1083656). Grant W. Montgomery was supported by NIH grant (HD042157, a collaborative study of the genetics of DZ twinning) and NHMRC Fellowship (GNT1078399). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886), and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). We would like to thank also 23andMe's consented research participants for contributing data on age at menarche for the FSHB gene locus and the Twinning Gwas Consortium (TGC). Co-authors from: Finland (Anu Loukola, Juho Wedenoja, Emmi Tikkanen, Beenish Qaiser), Sweden (Nancy Pedersen, Andrea Ganna), United kingdom King's College London (Department of Twin Research & Genetic Epidemiology: Pirro Hysi, Massimo Mangino), Institute of Psychiatry, Psychology & Neuroscience, Medical Research Council Social, Genetic and Developmental Psychiatry Centre (Eva Krapohl, Andrew McMillan).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.00

    Genome-wide association study of placental weight in 65,405 newborns and 113,620 parents reveals distinct and shared genetic influences between placental and fetal growth

    Get PDF
    A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth

    Modeling linkage disequilibrium increases accuracy of polygenic risk scores

    Get PDF

    Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

    Get PDF
    Intelligence is highly heritable(1) and a major determinant of human health and well-being(2). Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.Peer reviewe

    Multi-polygenic score approach to trait prediction

    Get PDF
    A primary goal of polygenic scores, which aggregate the effects of thousands of trait-associated DNA variants discovered in genome-wide association studies (GWASs), is to estimate individual-specific genetic propensities and predict outcomes. This is typically achieved using a single polygenic score, but here we use a multi-polygenic score (MPS) approach to increase predictive power by exploiting the joint power of multiple discovery GWASs, without assumptions about the relationships among predictors. We used summary statistics of 81 well-powered GWASs of cognitive, medical and anthropometric traits to predict three core developmental outcomes in our independent target sample: educational achievement, body mass index (BMI) and general cognitive ability. We used regularized regression with repeated cross-validation to select from and estimate contributions of 81 polygenic scores in a UK representative sample of 6710 unrelated adolescents. The MPS approach predicted 10.9% variance in educational achievement, 4.8% in general cognitive ability and 5.4% in BMI in an independent test set, predicting 1.1%, 1.1%, and 1.6% more variance than the best single-score predictions. As other relevant GWA analyses are reported, they can be incorporated in MPS models to maximize phenotype prediction. The MPS approach should be useful in research with modest sample sizes to investigate developmental, multivariate and gene-environment interplay issues and, eventually, in clinical settings to predict and prevent problems using personalized interventions

    Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases

    Get PDF
    Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg2) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of hg2 from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of hg2 from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of hg2 despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease

    Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence

    Get PDF
    Intelligence is associated with important economic and health-related life outcomes1. Despite intelligence having substantial heritability2 (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered3,4,5. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P < 5 × 10−8) in 18 genomic loci, of which 15 are new. Around half of the SNPs are located inside a gene, implicating 22 genes, of which 11 are new findings. Gene-based analyses identified an additional 30 genes (MAGMA P < 2.73 × 10−6), of which all but one had not been implicated previously. We show that the identified genes are predominantly expressed in brain tissue, and pathway analysis indicates the involvement of genes regulating cell development (MAGMA competitive P = 3.5 × 10−6). Despite the well-known difference in twin-based heritability2 for intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (rg = 0.89, LD score regression P = 5.4 × 10−29). These findings provide new insight into the genetic architecture of intelligence
    corecore