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Partitioning Heritability of Regulatory and
Cell-Type-Specific Variants across 11 Common Diseases

Alexander Gusev,1,* S. Hong Lee,2 Gosia Trynka,3,4,5,6,16 Hilary Finucane,7 Bjarni J. Vilhjálmsson,1

Han Xu,8 Chongzhi Zang,8 Stephan Ripke,9,10 Brendan Bulik-Sullivan,9,10 Eli Stahl,11

Schizophrenia Working Group of the Psychiatric Genomics Consortium, SWE-SCZ Consortium,
Anna K. Kähler,12 Christina M. Hultman,12 Shaun M. Purcell,9,10,11 Steven A. McCarroll,10

Mark Daly,6,9,10 Bogdan Pasaniuc,13 Patrick F. Sullivan,12,14 Benjamin M. Neale,6,9,10 Naomi R. Wray,2

Soumya Raychaudhuri,3,4,5,6,15 and Alkes L. Price1,6,*

Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of

complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to

imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (h2
g ) across functional cate-

gories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current

estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of

complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed

SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE ¼ 8%) of h2
g from imputed SNPs (5.13 enrichment; p ¼ 3.7 3

10�17) and 38% (SE¼ 4%) of h2
g from genotyped SNPs (1.63 enrichment, p¼ 1.03 10�4). Further enrichment was observed at enhancer

DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained<10% of h2
g despite having the

highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent

schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability

to unravel the functional architecture of common disease.
Introduction

Recent work by ENCODE and other projects1,2 has shown

that specific classes of variants can have complex and

diverse impacts on cell function and phenotype.3–10

Although the importance of coding variation has long

been understood, these projects identified other genomic

regions that can contribute to function and highlighted

the role of regulatory variants. With many potentially

informative functional categories and competing biolog-

ical hypotheses, quantifying the contribution of variants

in these categories to heritability of complex traits would

inform trait biology and focus genetic mapping.

The availability of significantly associated variants from

hundreds of genome-wide association studies (GWASs)11

has opened one avenue for quantifying enrichment.

Indeed, 11% of GWAS hits lie in coding regions,11 57%

of noncoding GWAS hits lie in broadly defined DNaseI hy-

persensitivity sites (DHSs; spanning 42% of the genome),3

and still additional GWAS hits tag these regions. The full
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distribution of GWAS association statistics exhibits en-

riched p values in coding regions and UTRs.12 Analysis of

DHS subclasses and other histone marks has revealed a

complex pattern of cell-type-specific relationships with

known disease associations.6 Recent work has also shown

that functional enrichment can be leveraged for increasing

association mapping power.13

Although relative enrichment has been documented,

the question of how much each category contributes

to disease heritability remains unanswered.14,15 Recently,

investigators have used variance-component methods to

estimate the total additive variance explained by all

genotyped SNPs (h2
g ),

16,17 and to estimate the h2
g of many

quantitative and dichotomous traits.18–22 We propose

joint estimation of h2
g from functional-category-specific

variance components for assessing enrichment. In contrast

to analyses of top GWAS hits, the variance-component

approach leverages the entire polygenic architecture of

each trait and accounts for pervasive linkage disequi-

librium (LD) across functional categories. Indeed, our
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simulations showed that this approach provides accurate

genome-wide estimates of functional enrichment in

diverse genetic architectures. We applied variance-compo-

nent methods to functional categories in GWAS- and

exome-chip data from over 100,000 samples in 11 traits.
Material and Methods

Estimating Enrichment of h2
g with Variance

Components
For a single component of genotyped (or imputed) SNPs, we

define h2
g , an underlying parameter in the population, as the r2

between the true phenotype and the best linear prediction over

those SNPs. With multiple components, the goal of the parti-

tioned analysis is to quantify the h2
g directly explained by SNPs

in each functional category while excluding tagging of SNPs in

other categories. We thus define the h2
g for each functional cate-

gory as the r2 between the true phenotype and the prediction

only from SNPs in that functional category when all functional

categories are jointly analyzed for a best linear prediction.

When SNPs are in LD, this definition remains valid as long as

the individual causal effect sizes are independent, as we would

expect in highly polygenic traits. For disease traits, we model

the phenotype (and corresponding h2
g ) by using the liability-

threshold model, in which individuals whose underlying unob-

served continuous liability exceeds a threshold are labeled as

disease case subjects.19,23

We estimate h2
g jointly across multiple variance components,

each constructed from variants belonging to nonoverlapping

functional categories. The underlying model assumes that SNP

effect sizes are drawn from a normal distribution with category-

specific variance. (We note that the normality assumption is unre-

alistic; previous work in the single-variance-component case has

indicated that this does not introduce bias, although modeling a

more realistic mixture distribution can increase precision.24

Because of computational constraints, we do not consider mixture

distributions here.) The model relates the observed phenotypic

covariance to a weighted sum of genetic relationship matrices

computed from SNPs in each category. The joint estimate allows

all components to compete for shared variance due to LD.

Formally, for a functional categories each containing the set of

SNPs Si (of sizeMi), wemodel the phenotype as a sum of individual

SNP effect sizes:

y ¼
Xa

i¼1

X
s˛Si

Wsb
i
s þ e;

where Ws is the genotype at SNP s, bis is the effect size at SNP s in

category i and is drawn from category-specific normal distribution

bi � Nð0; s2i Þ, and e is the residual effect e � Nð0; s2e Þ. We assume

that for each annotation i, SNPs normalized to have mean 0 and

variance 1 are contained in the matrix Wi. The variance of the

phenotype is then modeled as

VðyÞ ¼
Xa

i¼1

Kis
2
i þ e;

where each Ki represents a genetic-relationship matrix (GRM)

computed directly from the SNPs in annotation i as

Ki ¼ WiW
0
i

�
Mi:
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The corresponding s are then jointly inferred with the REML algo-

rithm in GCTA (Genome-wide Complex Trait Analysis),16,17

yielding

h2
gi ¼

s2
giPa

j¼1s
2
gi þ s2

e

:

The inverse of the final average-information matrix yields an es-

timate of the corresponding error-covariance matrix of the vari-

ance-component estimates.25 We use the error-covariance matrix

and delta method26 to compute SEs on h2
g and the percentage of

h2
g while accounting for error correlations (referred to here as

the analytical SE27). All estimates of h2
g were transformed to the li-

ability scale19 with the prevalence values in Table S1 (available

online). We evaluated the accuracy of the analytical SE for both

quantitative and ascertained traits and found it to correspond

well to the true SD under reasonable polygenicity (see Appendix

A). Meta-analysis estimates were computed with inverse-variance

weighting:28 given individual study estimates h2
gi, analytical SEi,

and corresponding weight wi ¼ 1=SE2
i , the meta-analysis mean is

equal to

P
iwi 3h2

giP
iwi

;

and the meta-analysis SE is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=

P
iwi

p
.

Enrichment is computed for each category i as the ratio of the

percentage of h2
gi (the percentage of h

2
g in category i) to the percent-

age of SNPi (the percentage of SNPs in category i) and is tested for

significance by Z score relative to a null of 1:0 with the (likewise-

rescaled) analytical SE. Under the assumption that all causal vari-

ants are typed, this statistic is equivalent to the relative risk that a

SNP in category i is causal in comparison to an average SNP. To

achieve unbiasedness, the estimate of h2
g is not constrained to lie

inside the plausible 0–1 bound, which can lead to negative esti-

mates in rare instances.
Estimating Enrichment from Summary Statistics
We considered alternative methods for estimating functional

enrichment from summary association statistics. The simplest

approach is to directly count the number of individual genome-

wide-significant variants in each functional annotation and

compare to the null expectation from all SNPs (or random SNPs

matched on certain features). This approach can either include

all significant markers or restrict to the most significant variant

in each locus. The genome-wide-significant-SNP approach has

been extended to the full distribution of association statistics for

quantifying overall p value enrichment.3 Over increasingly restric-

tive p value thresholds, the fraction of SNPs passing a given

threshold and belonging to each category is computed and

normalized by the category-specific genome-wide fraction. The

distributions are then inspected visually for enrichment or

assessed by permutation. For completeness, we considered two

additional methods—stratified quantile-quantile (Q-Q) plots12

and Bayesian hierarchical modeling (fgwas)13—which assess func-

tional enrichment but are primarily focused on improving associ-

ation mapping power (see Discussion).
Data Sets Analyzed
11 Diseases from WTCCC1 and WTCCC2

We analyzed seven traits from Wellcome Trust Case Control Con-

sortium 1 (WTCCC1) and four traits from WTCCC2 for a total
er 6, 2014



47,000 samples (Table S1). Estimates of h2
g are particularly sensitive

to individually small artifacts or batch effcts,19,29 and we followed

the rigorous quality-control (QC) protocol outlined previously21

by removing any SNPs that were below a minor allele frequency

(MAF) of 0.01, were above 0.002 missingness, or deviated from

Hardy-Weinberg equilibrium at a p value below 0.01. For each

case-control cohort, we removed SNPs that had differential miss-

ingness with a p value below 0.05. We excluded one of any pair

of samples with kinship entries R 0.0519 and performed five

rounds of outlier removal whereby all individuals more than

6 SDs away from the mean along any of the top 20 eigenvec-

tors were removed and all eigenvectors were recomputed30

(Figure S1). For all autoimmune diseases analyzed (rheumatoid

arthritis [RA], Crohn disease [CD], type 1 diabetes [T1D], ulcerative

colitis [UC], multiple sclerosis [MS], and ankylosing spondylitis

[AS]), we also excluded from the analysis any SNPs in the well-

studied major histocompatibility complex (MHC) locus (chr6:

26–34 Mb), which is known to have a complex LD structure,

and many heterogeneous variants of strong effect for these traits.

TheWTCCC1 samples were phased and imputed as described in

Gusev et al.21 TheWTCCC2 samples were split into two cohorts by

platform, and each cohort was imputed separately according to

the following protocol. All samples in a cohort were phased

together in 10 Mb blocks with HAPI-UR (Haplotype Inference for

Unrelated Samples)31 (see Web Resources) and three rounds of

phasing and consensus voting. All phased samples in a cohort

were then imputed in 1 Mb blocks with IMPUTE232 (see Web Re-

sources) and the 1000 Genomes33 Phase I integrated haplotypes

(September 2013 release; see Web Resources) with no singletons.

Where relevant, the Oxford recombination map34 was used.

Markers with an information (info) score greater than 0.5 were

retained. Finally, SNPs were excluded if they met any of the

following criteria in any case or control population: Hardy-Wein-

berg p value < 0.05, per-locus missingness > 0.05, MAF < 0.01, or

case-control differential missingness p value < 0.05.

Schizophrenia Cohort from the Psychiatric Genomics Consortium

We analyzed 24,926 schizophrenia (SP) subjects and 33,271 con-

trol individuals from 33 cohorts from the Psychiatric Genomics

Consortium (PGC2); they were typed on a variety of platforms,

quality controlled, and imputed to the 1000 Genomes reference

panel as previously described35 (Tables S1 and S2). Because of

computational constraints, we split the cohort into four subgroups

of individuals typed on similar platforms; each contained roughly

10,000–20,000 samples. We performed all analyses on the inter-

section of well-imputed SNPs within each subgroup, ranging

from four to fivemillion, and reportedmeta-analyzed results. Indi-

vidual study identifiers and 20 multidimensional-scaling compo-

nents were included as fixed-effect covariates in all analyses.

Swedish SP Exome Chip

We analyzed 12,674 Swedish samples typed on GWAS and exome

chips (Tables S1 and S3). The exome chip yielded 238,652 SNPs

(including monomorphic sites), of which 10,567 were also typed

on a mix of Affymetrix GWAS chips (exome-chip calls were re-

tained). The GWAS-chip data contained an intersection of

163,051 SNPs typed on all platforms in addition to per-platform

imputation from 1000 Genomes for a total of 5,053,934 SNPs

imputed on all platforms. Principal-component analysis (PCA) of

the GWAS data revealed a large cluster of ‘‘homogenous’’ Swedish

samples and clines related to Northern Swedish and Finnish

admixture (Figure S2). After excluding samples that (1) were not

typed on both GWAS and exome chips, (2) failed QC, (3) were

PCA outliers by 6 SDs, or (4) were in a pair with GRM values >
The American
0.05 (close relatives), we retained a total of 8,967 samples, of

which 6,375 were of ‘‘homogenous’’ Swedish ancestry. In all of

our analyses, rare variants had a MAF < 0.01, and common

variants had a MAF R 0.01. Simulations were performed on the

homogenous samples (without principal components). We per-

formed analyses of real phenotypes on the homogeneous samples

and included the top 20 principal components as covariates (to ac-

count for any residual population structure; analyses on the full

cohort are reported in Tables S23 and S25).
Functional Annotations
We annotated the genome by using six primary categories (Table

S4): (1) coding, (2) UTR, (3) promoter, (4) DHS in any of 217 cell

types, (5) intronic, and (6) intergenic. Each SNP was then assigned

a unique annotation defined by the first of these categories with

which it was annotated, resulting in six nonoverlapping variance

components (the DHS category was thus restricted to distal re-

gions). Each resulting category exhibited similar average allele fre-

quency and imputation accuracy, although the DHS category had

systematically lower LD36 (Table S5). We also computed the ‘‘effec-

tive’’ number of SNPs in each category by using an LD-based

metric that does not depend on sample size.36,37 Table S6 shows

that this metric was not substantially different from the actual per-

centage of SNPs used in imputed data, given that DHSs harbored

slightly more effective SNPs (15.7% SNPs versus 18.9% effective

SNPs) as a result of lower LD. For the imputed categories analyzed

here, the differences in the percentage of SNPs, percentage of effec-

tive SNPs, and percentage of physical size were relatively minor. A

greater difference was observed for genotyped SNPs: 23.6% of DHS

SNPs corresponded to 33.6% of effective SNPs, suggesting that

DHS enrichments from genotyped data might be indicative of

better tagging.

For the DHS annotation, we used DNase sequencing libraries

downloaded from ENCODE and Epigenome Roadmap projects

in May 2012 and merged biological replicates into a single library

(GEO accession numbers are available in Table S7). We used

BOWTIE v.1.038 to align raw read sequences to UCSC Genome

Browser hg19 and used MACS v.2.0 with false-discovery rate <

0.01 (the default cutoff) and Benjamini–Hochberg correction39

to call DHS peaks. For the primary analysis, all peaks were merged

into a single DHS annotation spanning 16% of the genome. We

note that 98% of the primary DHS annotation was covered by

the DHSs released by Maurano et al.3 (spanning 37% of the

genome), and 67% of the primary DHS annotation was covered

by the DHSs analyzed in Thurman et al.4 (spanning 15% of the

genome). For the cell-type-specific analysis, duplicate lines were

merged to form a final set of 83 unique cell types. The resulting

annotations are available for download (see Web Resources).

Segway-chromHMM combined genome segmentations40 were

downloaded for six cell lines (see Web Resources). All regions clas-

sified as enhancers or weak enhancers were then combined into a

single enhancer annotation. DNaseI digital genomic footprinting

(DGF) regions were downloaded for 57 cell lines (see Web Re-

sources). All regions from the narrow-peak classification were

then merged into a single DGF annotation.
Simulation Framework
The goal of our simulations was to demonstrate that the parti-

tioned h2
g properly recovers the heritability explained by causal

variants in a given functional category under a variety of disease

architectures. We performed simulations in genotyped and
Journal of Human Genetics 95, 535–552, November 6, 2014 537



Figure 1. Estimates of Functional Enrichment under the Null
We simulated a polygenic disease architecture in imputed data
with no functional enrichment (see text). Simulated phenotypes
were tested with the variance-component method (top) from
3,000 simulations and with p value enrichment (bottom) from
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imputed data in 4,414 samples from theWTCCC1 coronary artery

disease (CAD) case-control cohort together with the six main

functional annotations to evaluate robustness and accuracy of

the proposed variance-component method and the p-value-

enrichment approach; we note that the genome-wide-signifi-

cant-SNP approach is subsumed by the latter and is not reported

separately in most analyses. For each simulation, 10% of the (gen-

otyped or imputed) SNPs were randomly sampled to be causal, and

normally distributed effect sizes were assigned to each SNP such

that each explained equal variance in expectation. Additive phe-

notypes were then constructed, and random noise was added for

an overall h2
g of 0.50. Except when evaluating h2

g between geno-

typed and imputed SNPs, we did not hide causal variants from

the analyses, corresponding to the assumption that all causal var-

iants are typed. We evaluated the variance-component model by

using multiple components with GCTA in the unconstrained

mode. For approaches based on summary statistics, we computed

Z scores, SEs, and p values for the univariate regression of each SNP

to a simulated phenotype.
Results

Simulations

We first evaluated the calibration of the methods in simu-

lations of no enrichment by assuming a MAF-independent

architecture where causal variants were uniformly sampled

from the genome (seeMaterial andMethods). We observed

no significant deviations from the null for any categories

estimated by variance components or p value enrichment

(Figure 1). To evaluate possible biases due to MAF-depen-

dent architectures,21,41,42 we also considered a low-fre-

quency architecture where only SNPs with a MAF below

0.05 can be causal and a DHS-low-frequency architecture

where causal DHS variants are drawn from MAF below

0.05 and all other variants are drawn from any MAF (Fig-

ures S3 and S4). Results were generally similar to the

MAF-independent architecture, although variance-compo-

nent estimates exhibited slight but statistically significant

deviations for the promoter and UTR categories, which

were very small and in tight LD with each other.

We next considered simulations with maximal enrich-

ment, where all causal variants were drawn from a single

functional category. MAF-independent results for the cod-

ing and DHS categories are shown in Figure 2 (see Figure S5

for other results). The variance-component estimate of the

percentage of h2
g was again around 100% for the true causal

category and 0% for all others. The plots of p value enrich-

ment correctly demonstrated significant enrichment for

five of the categories, but not the DHS category, which,

when causal, was not significantly different from the

null. This lack of enrichment at DHSs and not at other

large categories was most likely due to the uniquely lower
100 simulations. In the variance-component subplot, the thin
line represents the median, boxes represent the first and third
quartiles, and whiskers represent the 1.53 interquartile range
from the first to the third quartile. A subplot of p value enrichment
shows 1.963 SE as shaded regions.
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Figure 2. Estimates of Functional Enrichment from a Single Causal Category
We simulated a polygenic disease architecture in imputed data with causal SNPs drawn from a single functional category, corresponding
to complete enrichment. Simulated phenotypes were tested with the variance-component method (top) from 200 simulations and with
p value enrichment (bottom) from 100 simulations. In the variance-component subplot, the thin line represents the median, boxes
represent the first and third quartiles, and whiskers represent the 1.53 interquartile range from the first to the third quartile. Subplots
of p value enrichment show 1.963 SE across simulations as shaded regions. For each method, only the coding-causal and DHS-causal
scenarios are shown (additional simulations appear in Figures S6 and S7).
LD of DHS SNPs (Table S5). For the small categories (cod-

ing, UTR, and promoter), true causals in one category

always yielded false p value enrichment in the others

because of their close proximity and high LD (Figure 2; Fig-

ures S6 and S7). In the MAF-dependent scenarios, the vari-

ance-component estimate of h2
g was nearly unbiased: it had

slight but significant inflation at the coding and UTR cate-

gories when they contained 100% of h2
g (Figure S8). Plots of

p value enrichment exhibited similar patterns as in the

MAF-independent simulations, and the DHS category

was further falsely depleted (Figure S7).

To investigate the differences between genotype- and

imputation-based estimates, we partitioned h2
g of cate-

gory-specific phenotypes simulated from imputed SNPs
The American
by using components constructed from genotyped SNPs

only. If the genotypes are reasonable proxies for imputed

variants, 100% of h2
g should again be partitioned into

each truly causal category. Instead, we observed significant

deviations for all of the categories, and h2
g was partitioned

into nearby categories as a result of incomplete tagging

(Figures S9 and S10). In particular, less than half of the h2
g

at imputed DHSs was partitioned into the DHS category

in genotype data. Thus, estimates produced with only gen-

otyped SNPs can severely underestimate enrichment. The

difference between genotyped and imputed simulations

suggests that estimates from imputed SNPs could also un-

derestimate the true enrichments or depletions for rare

causal variants that are absent from 1000 Genomes or are
Journal of Human Genetics 95, 535–552, November 6, 2014 539



poorly imputed. We investigated this possibility by using

the exome-chip SP data (see below). We separately assessed

the impact of imputation error by simulating phenotypes

with induced genotype noise proportional to the per-SNP

imputation quality score (info score; Supplementary infor-

mation S3 in Marchini et al.43) but observed no significant

biases in null or causal simulations (Tables S8 and S9), most

likely as a result of the stringent postimputation QC.

We evaluated multiple other complex architectures with

respect to LD (see Appendix A) but observed significant

bias in only one deliberately severe scenario: causal vari-

ants sampled from intronic and intergenic regions either

directly adjacent to or proximal to a DHS (within 1 kb of

a DHS boundary). Although no substantial false DHS

heritability was observed in genotyped SNPs, the imputed

DHS component picked up 50% (0–500 bp) and 20% (500–

1,000 bp) of the non-DHS h2
g (Figure S11). Given our

findings that genotyped SNPs are expected to greatly un-

derestimate DHS enrichment, we consider genotyped and

imputed estimates to be lower and upper bounds, respec-

tively, on the true causal enrichment.

Heritability of Functional Categories across

11 Diseases

We analyzed a total of 11 WTCCC1 and WTCCC2 pheno-

types.44–46 After QC,21 the seven WTCCC1 traits each

included an average of 1,700 affected subjects and a set

of 2,700 shared control subjects; the four WTCCC2 traits

included 1,800–9,300 affected subjects and 5,300 shared

control subjects (see Material and Methods; Table S1). In

all analyses of autoimmune traits, SNPs in the well-studied

MHC region were excluded, although inclusion of the

MHC as a separate component did not significantly affect

the results. Each cohort was imputed to the 1000 Genomes

reference panel, yielding four to six million SNPs per trait

after QC (see Material and Methods; Table S1). This anal-

ysis is expected to be skewed toward the autoimmune

traits, which composed 6/11 traits analyzed and 20,461/

30,158 affected subjects analyzed. We computed meta-

analysis values by using inverse-variance weighting with

the analytical SE to account for different levels of error

across h2
g estimates. After meta-analysis, resulting SEs

were adjusted for the use of shared controls by genomic

control (unless otherwise stated), and p values were

computed by a simple Z score comparing the mean enrich-

ment and adjusted SE to a null of 1.0 enrichment. Esti-

mating enrichment from shifted functional annotations

yielded null enrichments and p values (Tables S10 and

S11), confirming that this null is comparable to random

SNP comparisons used in previous work.3,11,40,47

Combined results meta-analyzed across all traits are re-

ported in Figure 3 (Tables S10, S12, and S13). In genotyped

data, DHS variants (spanning 24% of genotyped SNPs)

were the most significantly enriched and explained an

average of 38% (SE ¼ 4%) of the total h2
g , a 1.63 enrich-

ment (p ¼ 1.0 3 10�4). Coding variants were the only

other category significantly enriched (after six tests were
540 The American Journal of Human Genetics 95, 535–552, Novemb
accounted for) and explained 4% (SE ¼ 1%; p ¼ 1.1 3

10�3). All enrichments or depletions were stronger when

imputed SNPs were analyzed in terms of both significance

and information content, consistent with our previous

simulations (Figures S9 and S10; Table S16). Variants in

DHSs again exhibited the greatest h2
g and most significant

enrichment: imputed DHS SNPs explained an average of

79% (SE ¼ 8%) of the total h2
g , a 5.13 enrichment (p ¼

3.7 3 10�17). The enrichment varied across traits

(Figure S12; Table S14), and there was a nominally signifi-

cant difference between the six autoimmune traits (AS,

CD, MS, RA, T1D, and UC) and the five nonautoimmune

traits (SP, bipolar disorder, CAD, hypertension, and type

2 diabetes [T2D]) at 5.53 and 3.33, respectively (p ¼
0.01 for difference without accounting for shared control

subjects). Coding variants exhibited the greatest overall

enrichment at 13.83 (p ¼ 1.8 3 10�3) but accounted for

8% of h2
g because of the much smaller category size. Corre-

spondingly, we observed a significant depletion for both

intronic regions (0.13; p ¼ 4.9 3 10�9) and intergenic re-

gions (�0.13; p < 10�20) and h2
g that was not significantly

different from 0. We note that compared to genotyped

SNPs, imputation in these traits generally does not explain

additional h2
g ,
21 but it can more precisely partition heri-

tability into functional categories. We performed addi-

tional simulations mimicking the enrichment observed

in imputed data with 8,300 causal variants (as inferred in

a large GWAS of a polygenic trait48) and found that 79%

of heritability was explained by imputed DHS SNPs, 8%

was explained by imputed coding SNPs, and the remainder

was uniformly drawn from the other variant categories.

This ‘‘realistic’’ scenario yielded much weaker estimates of

enrichment from genotyped SNPs, and they were similar

to estimates from genotyped SNPs in real data (Figure 3).

We considered alternative estimation procedures to rule

out potential biases. Although we allowed individual

values of h2
g to fluctuate outside the 0–1 bound on vari-

ance to achieve unbiased estimates prior to averaging

across traits,49 a constrained analysis yielded similar re-

sults (see Table S15). Individual point estimates escaping

the 0–1 bound were consistent with our imputed simula-

tions under realistic enrichment, which showed that the

percentage of h2
g for DHSs exceeded 1.0 10% of the time,

whereas the percentage of h2
g for intronic and intergenic

regions fell below 0.0 30% and 23% of the time, respec-

tively, for a typical 7,000-sample cohort. Using flat instead

of inverse-variance weighting yielded a comparable esti-

mate such that DHS SNPs explained an average of 85%

(SE ¼ 15%) of h2
g . With the flat weighting, the SD of

imputed DHS estimates across different traits was 48%,

which corresponds to a SD of 32% in the true unobserved

values after the analytical SE of each estimate is accounted

for (Table S14). We further evaluated the robustness of

these estimates and found that biases arising from

analytical SEs, ancestry, or case-control ascertainment

were unlikely to significantly affect the enrichment (see

Appendix A).
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Figure 3. Functional Partitioning of SNP Heritability across 11 Traits
(Top panels) Joint estimates of the percentage of h2

g from six functional components are shown in filled bars (meta-analyzed over 11
traits). The null expectation, equal to the percentage of SNPs in each category, is shown by dashed, unfilled bars, and p values report
the difference from this expectation. Fold enrichment relative to the null expectation is shown in parentheses below each category.
The left panel shows results from analyses of genotyped SNPs only, and the right panel shows analysis of genotyped and 1000 Genomes
imputed SNPs. Error bars show 1.963 SE after adjustment for shared controls.
(Bottom panels) Partitioned h2

g in simulations of a ‘‘realistic’’ trait where DHS and coding variants explained 79% and 8% of h2
g , respec-

tively (with no enrichment elsewhere). Filled bars show the mean inferred percentage of h2
g from genotyped (left) and imputed (right)

SNPs over 100 simulations. Patterned bars show the simulated true partition. Error bars show 1.963 SE (on average, SEs on imputed data
were 2.23 higher than SEs on genotype data as a result of the abundance of new variants).
To investigate whether enrichment in h2
g from all SNPs at

known loci was consistent with the genome-wide esti-

mates, we partitioned the h2
g explained by SNPs within 1

Mb of published GWAS loci for each trait (NHGRI GWAS

catalog;11 see Web Resources) (Figure S13). Because some
The American
traits had a small number of loci, the DHS component

was jointly analyzed with only a single other component

containing all non-DHS SNPs. We again observed a highly

significant DHS enrichment in imputed data and a sig-

nificant difference between the genotyped and imputed
Journal of Human Genetics 95, 535–552, November 6, 2014 541



Figure 4. Enrichment from GWAS Summary Statistics
(Left panel) Estimates of p value enrichment are averaged over 11
analyzed traits and are restricted to minimum p value thresholds
(x axis) for which at least one association meeting the threshold
was observed in every trait.
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estimates (p ¼ 7.3 3 10�14). We observed a marginally sig-

nificant difference between the DHS enrichment at known

loci versus genome-wide in the imputed data (3.63 versus

5.53, p ¼ 0:003). Although it does not pass multiple-test

correction, this p value suggests that genome-wide-signifi-

cant SNPs of large effects might be less enriched with DHS

variants than the rest of the genome.

We have shown by simulation that estimates from gen-

otyped SNPs are expected to provide a lower bound on

enrichment or depletion and that estimates from imputed

SNPs are biased upward only when causal variants are very

close to the annotation boundary. For brevity, subsequent

results focus primarily on the analysis of imputed SNPs.

Comparison to Estimates of Enrichment from

Summary Statistics

We compared our imputed variance-component estimates

of 5.13 DHS enrichment for the 11 traits to the DHS

enrichment of genome-wide-significant variants identified

in these data or from published loci (NHGRI GWAS

catalog;11 see Web Resources). The enrichments from

genome-wide-significant variants were much smaller

(0.913 and 1.743 for variants in these data and published

loci, respectively; Table S17). This is roughly consistent

with previous results indicating that 57% of noncoding

GWAS hits (from any trait) lie in broadly defined DHSs

spanning 42% of the genome (1.43 noncoding enrich-

ment; 1.23 overall enrichment) and that this percentage

increases to 77% of noncoding GWAS hits when SNPs in

perfect LD with a DHS SNP are included (1.83 noncoding

enrichment; 1.63 overall enrichment).3 Similarly, 30% of

the noncoding GWAS hits analyzed in Maurano et al.3

lay in our DHS annotation, yielding a comparable 1.83

noncoding enrichment. Extending to the full distribution

of association statistics did not reveal significant DHS

enrichment in any of these traits (Figure 4, left panel;

Figure S14). This is consistent with our previous simula-

tions showing the variance-component approach to be

more effective than the p-value-enrichment approach at

identifying DHS enrichment from complex-disease archi-

tectures (Figure 2).

We sought to further confirm this observation by ex-

tending our simulations to a single large cohort with real-

istic levels of enrichment on the basis of the above results.

We simulated the ‘‘realistic’’ level of enrichment (see

above) in 33,000 combined WTCCC2 samples, corre-

sponding to a large GWAS. We then conducted a standard

GWAS on the simulated traits and plotted functional

enrichment by using p value enrichment (see Material

and Methods). The strategy yielded enrichment at coding
(Middle panel) p value enrichment from a ‘‘realistic’’ simulation.
(Right panel) Variance-component enrichment from a ‘‘realistic’’
simulation. Realistic traits were simulated with DHS and coding
variants explaining 79% and 8% of h2

g , respectively, and with
computed GWAS statistics in a cohort of 32,000 samples. Shaded
regions and error bars represent the SE from meta-analysis (left)
and 50 replicates (middle and right).
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Figure 5. Hierarchical Analysis of Functional Enrichment
DHS variants were further partitioned into three subcategories: predicted enhancers (A), cell-type-specific DHSs (B), and DGF targets (C).
Each block contains (on the top line) the functional category and fraction of the genome (in parentheses) and (on the bottom line) the
fraction enriched in relation to the rest of the genome and the p value of enrichment in relation to the parent category (in parentheses).
DHS enrichment of 4.73 nonsignificantly differed from 5.13 in Figure 3 as a result of additional free parameters.
variants through the full distribution of association statis-

tics (Figure 4, middle panel). However, proximal categories

such as UTR and promoter, which were truly depleted, also

appeared enriched through tagging of significant coding

variants. DHS variants were the least-enriched noninter-

genic category, even though they made the single largest

contribution to heritability. This was likely due to lower

power to detect DHS SNPs as a result of their lower average

effect size (relative to that of coding SNPs) and less LD. On

the other hand, applying the variance-component strategy

to the simulated cohorts correctly recovered the enrich-

ment factors (Figure 4, right panel). These simulations

further demonstrate that GWAS p values, although

partially informative, can yield false-positive and false-

negative enrichment to make functional interpretation

difficult, motivating further development of methods

that can produce robust estimates of partitioned heritabil-

ity from summary statistics.

Analysis of PGC2 SP Data

We replicated our functional-enrichment results in an in-

dependent cohort of 58,197 samples from PGC2 (Tables

S1 and S2). In the PGC2 data, the imputed DHS

enrichment was significant at 3.23 (SE ¼ 0.29, p ¼ 1.4 3

10�13), and the intergenic category was significantly

depleted at 0.33 (SE¼ 0.06, depletion p< 13 10�20; Table

S18). For comparison, the WTCCC2 analysis restricted to

SP produced a nonsignificant DHS enrichment of 2.63

(SE ¼ 1.47, p ¼ 0.28) and intergenic h2
g of 0.43 (SE ¼

0.27, depletion p ¼ 0.02; Table S14). The consistency of
The American
WTCCC2 and PGC2 estimates indicates that platform arti-

facts are unlikely to be a major confounder. Moreover, the

substantially lower SE in this large cohort demonstrates the

effectiveness of our methods at characterizing a single

complex trait. As in our previous simulations, p value

enrichment did not identify substantial enrichment at

DHS variants (Figure S15).

Partitioning h2
g within DHSs

We further partitioned DHS enrichment in the WTCCC1

data into functional subcategories to assess significance

in relation to all DHSs. We used Segway-chromHMM com-

bined classifications of enhancer regions40 to partition

DHSs (15.7% of the genome) into those that overlapped

predicted enhancers (3.2% of the genome) and those

that did not (Figure 5A). The enhancer DHSs explained

31.7% (SE ¼ 3.3%) of the total h2
g , yielding an enrichment

of 9.83 versus all SNPs (1.93 versus all DHSs; p ¼ 5.1 3

10�4). We also partitioned DHSs into regions that were

called in two or fewer cell types (‘‘specific’’; after merging

similar tissues) and those that were not (Figure 5B). We

observed a significant enrichment for cell-type-specific

DHSs (6.13 versus all SNPs; 1.33 versus all DHSs; p ¼
3.2 3 10�3). The enrichment was not significant when

we repeated this analysis for enhancer and nonenhancer

DHSs separately. We next split the DHSs into SNPs overlap-

ping and not overlapping the ENCODE database of DGF

regions (8.5% of the genome), which are expected to

precisely map sites where regulatory factors bind to the

genome50 (Figure 5C). We observed no difference in h2
g
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Table 1. Cell-Type- and Phenotype-Specific DHS Enrichment

Tissue Type Cell Type

Autoimmune Nonautoimmune

PublishedGenotyped Imputed Genotyped

Blood Primary T helper 1 cells 5.8 (4.2 3 10�6) 10.2 (1.3 3 10�12) 2.1 (3.5 3 10�1) Maurano et al.3 (CD)

leukemia cells 3.5 (6.7 3 10�6) 4.7 (5.3 3 10�10) 1.0 (9.8 3 10�1) –

lymphoblastoid cells 3.3 (1.1 3 10�5) 4.9 (5.4 3 10�11) 1.0 (9.4 3 10�1) Maurano et al.3 (MS)

CD8þ primary cells 3.0 (3.0 3 10�4) 5.4 (1.8 3 10�10) 1.0 (9.6 3 10�1) Trynka et al.6 (RA)

Fetal kidney fetal right renal pelvic cells 5.4 (1.4 3 10�4) 8.2 (5.7 3 10�8) 1.5 (7.4 3 10�1) –

Bone marrow CD14þ monocytes 4.1 (1.6 3 10�4) 5.7 (2.2 3 10�7) 1.3 (7.6 3 10�1) Maurano et al.3 (MS)

Fetal thymus Fetal thymus cells 2.6 (4.0 3 10�4) 4.5 (3.2 3 10�9) 0.8 (6.6 3 10�1) –

Fold enrichment of h2
g reported for cell-type-specific DHSs observed as significant in genotype data (after adjustment for 83 cell types tested). Wemeasured enrich-

ment in comparison to h2
g at DHSs to account for the background DHS enrichment. Results are shown separately frommeta-analyses of six autoimmune traits and

five nonautoimmune traits. Instances where enrichment was also observed in Trynka et al.6 or Maurano et al.3 are indicated.
between these DHSs and other DHSs (1.03, p ¼ 0.90).

However, DGF annotations were collected for only a subset

of DHS cell types analyzed, and analysis in additional cell

types is needed. Lastly, we partitioned the h2
g by using an

expanded DHS annotation (including regions overlapping

coding regions, UTRs, and promoters) into the remaining

five major categories (Table S19), which yielded 34.43

enrichment at DHS coding variants versus all SNPs (5.33

versus all DHSs, p ¼ 1.35 3 10�3) and 13.23 enrichment

at DHS promoter variants versus all SNPs (2.33 versus all

DHSs, p ¼ 7.90 3 10�3). Notably, unlike the non-DHS in-

trons, DHS introns did not show substantial depletion

(0.93 versus all DHSs, p ¼ 0.037).

To investigate the role of specific cell types, we separately

estimated enrichment in h2
g for DHSs in each of 83 unique

cell types (see Material and Methods). For each trait and

cell type, we estimated h2
g jointly from three components

corresponding to DHSs observed in that cell type, other

DHSs not observed in that cell type, and all other SNPs;

we assessed enrichment in relation to all DHSs. On the

basis of our previous observation of heterogeneity, we

performed meta-analyses across the six autoimmune traits

(excluding the MHC) and across the five nonautoimmune

traits. We observed seven cell types that were significantly

enriched in autoimmune traits in genotype data (we

conservatively adjusted for 83 tests, although the cell types

are highly correlated), and none were significantly en-

riched in nonautoimmune traits (Table 1). Four of these

seven cell types have previously been implicated in auto-

immune diseases: Trynka et al.6 found that GWAS hits

for RA were enriched within H3K36me3 peaks from

CD8þ primary cells (at p ¼ 0.0042), and Maurano et al.3

found that nominally significant SNPs in a GWAS of CD

were enriched within DHS peaks from primary T helper 1

cells and that nominally significant SNPs in a GWAS of

MS were enriched in DHS peaks from lymphoblastoid

and monocyte CD14þ cells. The remaining three signifi-

cant cell types were leukemia cells, fetal pelvis cells, and

fetal thymus cells (additional nominally significant cell
544 The American Journal of Human Genetics 95, 535–552, Novemb
types are listed in Table S20). The enrichment was typically

observed in all autoimmune traits individually; CDwas the

least enriched on average (2.83), and UC was the most en-

riched on average (5.13; Table S21). As before, the signal

was stronger and more significant when we included

imputed SNPs (Table 1).

On the basis of the hypothesis that most regulatory sites

lie at the center of the called DHS peaks, we considered the

enrichment after progressively narrowing the DHS annota-

tions. Specifically, we trimmed the ends of each DHS peak

(without removing any individual peaks) to a maximum

length set such that the resulting overall DHS annotation

covered 1%, 5%, or 10% of the physical genome. We

then tested these three narrowed annotations in two

models: (1) a univariate model in which h2
g was inferred

from only the narrowed DHS component, thereby

including any tagged heritability from other functional

categories; and (2) a six-component model in which the

full DHS component was replaced with the narrowed

DHS component and the remaining DHS SNPs were

distributed into the intron and other components. We

found the DHS centers to be particularly strongly enriched

(Table S22); the 1% annotation explained 19.8% of the to-

tal h2
g in the multivariate model (p ¼ 2.6 3 10�6) and

61.0% of the total h2
g in the univariate model. For compar-

ison, the coding component covering roughly 1% of the

genome explained 30.0% of the total h2
g in the univariate

model. The monotonic increase in h2
g from narrowed an-

notations is further evidence of enrichment at the DHS

centers. We caution that this experiment might have

been particularly susceptible to bias from causal variants

very close to the annotation boundary.

Unbiased Estimates of h2
g with Rare and Common

Variants

We separately analyzed a cohort of 2,500 SP subjects and

3,875 control subjects who were of homogenous Swedish

origin and had been typed on both GWAS and exome

chips (see Material and Methods; Tables S1 and S3) to
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Table 2. h2
g of SP from Exome Chip

Variant Class h2
g Percentage of h2

g

Separately

All 0.370 5 0.040 –

Noncoding 0.317 5 0.042 –

Coding 0.158 5 0.034 –

Jointly

Noncoding 0.291 5 0.028 79% 5 8%

Coding 0.079 5 0.034 (p ¼ 1.2 3 10�2) 21% 5 6%

Coding (rare) 0.037 5 0.029 (p ¼ 1.0 3 10�1) 10% 5 7%

Coding (common) 0.042 5 0.017 (p ¼ 7.7 3 10�3) 11% 5 4%

Estimates of h2
g (adjusted for biases due to LD; see Figure S17 and Table S23)

are reported from variance components in the homogenous Swedish subpop-
ulation. The top section shows estimates that include tagging of variants in
other classes. The bottom section shows joint estimates accounting for tagged
variance due to LD. The p values from a likelihood-ratio test are shown in
parentheses.
investigate the possible contribution of rare coding vari-

ants to missing heritability,51 defined as the gap between

our genome-wide estimates of h2
g and the total narrow-

sense heritability. The exome-chip variants were primarily

rare and consisted of 18% singletons and 64% nonsingle-

tons with a MAF below 0.01. A concern is that h2
g estimates

from exome-chip data can be substantially biased as a

result of the abundance of rare variants.21,41,42 To address

this, we performed simulations across the full causal-allele

frequency spectrum and found that joint estimates from

two frequency-stratified42 components computed from

rare (MAF % 0.01) and common (MAF > 0.01) SNPs elim-

inated most of the observed bias. Subsequently adjusting

each component for LD completely eliminated bias for

normalized effect sizes (Figure S17) and yielded the most

accurate estimate for standard effect sizes (Figure S18).

We report estimates from joint components with (Table 2)

and without (Table S23) LD adjustment.

We partitioned the heritability explained by GWAS-chip

and exome-chip data into three separate variance compo-

nents: noncoding, rare coding (MAF< 0.01), and common

coding variants. This partitioned analysis identified a total

h2
g of 0.079 (SE ¼ 0.034) from all coding variants (Table 2);

only the h2
g of 0.042 (SE ¼ 0.017) from common coding

variants was significantly different from 0 (p ¼ 7.7 3

10�3; rare coding p ¼ 0:10). Moreover, the estimate of

DHS enrichment from common SNPs was unaffected by

the inclusion of rare coding variants (Table S24), confirm-

ing that DHS enrichment was not an artifact of untagged

coding variation in this cohort. The h2
g from rare variants

remained nonsignificant even after we partitioned accord-

ing to PolyPhen-2 scores,52 restriction to putative SP-asso-

ciated genes (see Appendix A), or gene collapsing (Tables

S25 and S41–S43). This does not invalidate the use of

collapsed-gene burden tests for association and genetic

mapping because the individual collapsed gene is still a
The American
fundamentally informative unit of association. It does,

however, demonstrate that the maximum variance that

can be explained by such methods is guaranteed to be sub-

stantially lower than that of association with the full

model, as has been shown in previous analyses of burden

tests.53 For singleton variants, we can place a 95% upper

bound on collapsed h2
g at 0.014. We caution that our

exome-chip results pertain to rare variants included in

the chip design (ascertained from 12,000 samples) but do

not extend to extremely rare variants. However, our find-

ings are consistent with a recent analysis of SP exome

sequencing data, which identified a significant but modest

rare-coding burden (0.4%–0.6% of total variance) in a sub-

set of ~2,500 genes.54

Fine Mapping with Functional Priors

Estimates of functional h2
g enrichment can guide fine-map-

ping analysis, where the goal is to identify a minimal set of

SNPs that include the underlying causal variant(s).55 To

investigate thepotential benefits of finemappingon theba-

sis of our estimates of functional enrichment, we applied

these estimates as priors for fine mapping in four traits

(RA, T2D, CAD, and SP) with publicly available imputed

summary statistics (Table S26; see Web Resources). We

used corresponding estimates of functional enrichment in

the WTCCC1 data for RA, T2D, and CAD (while implicitly

assuming a best-case scenario in which functional enrich-

ment was accurately estimated for each trait) and used esti-

mates of functional enrichment in PGC2 data for SP. Given

that SNPs at genome-wide-significant loci explain only a

small proportion of the trait variance, we do not expect par-

tial sample overlap tobe a significant confounder.Although

fine-mapping analysis ideally involves targeted sequencing

orgenotyping,Maller et al.55 observed that the latterhad lit-

tle impact on their fine-mapping analysis in comparison to

imputed data, sowe expect imputedmarkers to be a reason-

ableproxy. Each locuswasdefinedas theunionof1Mbwin-

dows aroundanySNPwith apvalue<5310�8. Association

statistics consisting of individual SNP effect sizes and SEs

were converted to Bayes factors as described in Pickrell13

and Wakefield56 and were multiplied by either a flat prior

or the genome-wide functional prior (computed as the esti-

mated h2
g per SNP of the SNP category in the corresponding

trait). We then computed the credible set for each locus for

each scenario by including SNP Bayes factors from highest

to lowest until the sum of the Bayes factors in the set was

at least 95% of the sum of the Bayes factors at the locus.

On average, we found that the six main functional priors

reduced the credible set of causal variants by 30% across

the four traits (Table 3). The largest reduction of 63% was

observed in RA, where the total credible set for five loci

(excluding the MHC) was reduced from 69 SNPs to 26. For

comparison, including only coding-variant enrichment as

a prior reduced the credible sets by 5% on average and

had no reduction for RA. We showed by simulation that

the credible sets were well calibrated with the correct priors

andmiscalibrated by less than 10%when the priors were at
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Table 3. Credible Sets of Causal SNPs at Known Associated Loci

Phenotype No. of Loci Total SNPs Flat Prior Coding Prior Main Functional Priors Main and Enhancer Priors

RA 5 8,393 69 69 26 26

T2D 13 24,799 101 90 84 83

CAD 16 27,685 112 112 90 86

CAD (metabo-chip) 34 7,498 325 325 264 260

PGC2 146 582,401 5,696 5,660 4,756 not available

For each trait, genome-wide-significant loci from meta-analysis association statistics were reduced to 95% credible sets with and without functional priors. The
right-most four columns describe the number of SNPs in the credible set obtained from each prior type. ‘‘Flat prior’’ corresponds to standard analysis with no
functional information. ‘‘Coding prior’’ uses only enrichment at coding variants. ‘‘Main functional priors’’ include all six priors from the main functional analysis.
‘‘Main and enhancer priors’’ include all six main priors and the enhancer-DHS prior.
the extremes of the meta-analysis estimates (Table S27),

demonstrating that this functional fine-mapping strategy

might become robust and effective as individual trait sam-

ple sizes reach the current meta-analysis sample size. How-

ever, we caution that our estimates of functional enrich-

ment for individual traits, except SP, are not tight enough

for this strategy to be actionable at the current time.
Discussion

The importance of regulatory and cell-type-specific varia-

tion in common disease has previously been recog-

nized,3–10 but in contrast to previous work, we provide a

quantification of this contribution to disease heritability.

We have demonstrated by extensive simulations that our

variance-component strategy yields robust estimates that

account for LD between categories and complex-disease ar-

chitecture. Across 11 traits, we found that regulatory re-

gions marked by DHSs explained an average of 79% of

imputed h2
g and 38% of genotyped h2

g . We replicated our re-

sults in a large SP cohort, yielding a single-trait estimate of

3.23 (SE ¼ 0.29, p ¼ 1.4 3 10�13) from imputed SNPs, and

found that the contribution from rare, exome-chip vari-

ants was nonsignificant and did not affect the enrichment.

Given that GWASs primarily identify noncoding vari-

ants, many hypotheses have been developed to explain

the architecture of complex traits, including noncoding

RNA, DNA methylation, alternative splicing, and unanno-

tated transcripts.14,57 Several previous studies have demon-

strated an excess of significant GWAS associations in

regulatory categories.5,6,11,58 In particular, Ernst et al.59

observed 23 enrichment in cell-type-relevant enhancers,

Schaub et al.8 identified 1.123 enrichment at DHSs, and

Maurano et al.3 identified 1.43�1.83 enrichment at

DHSs (relative to noncoding SNPs) and enrichment at

cell-type-relevant DHSs. In our analyzed cohorts, known

variants were1.73 enriched with DHSs, but there was less

enrichment at variants identified only in these cohorts.

In contrast, our findings constrain most of h2
g to the 16%

of SNPs that lie in the DHS marks tested (or to SNPs that

lie very close to DHSs; see below), particularly in those

that overlap enhancers, and suggest that the other pro-
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posed mechanisms are unlikely to make substantial inde-

pendent contributions. A deeper analysis of DHSs nar-

rowed to cover 1% of the genome still explained 20% of

h2
g directly (and 61% in total), potentially motivating a

DHS-targeted genotyping chip analogous to the exome

chip.60 More generally, our approach provides a means of

assessing biological hypotheses of contributions to disease

heritability.

Unlike previous methods, our approach infers disease-

relevant biological function from all SNPs simultaneously

instead of one GWAS hit at a time. Overmultiple simulated

disease architectures, we show that variance-component

methods are more accurate in partitioning heritability

than summary-statistic-based approaches, such as p value

enrichment, despite the appeal of analyses of summary sta-

tistics in many contexts.61–64 For completeness, we also

considered two additional methods, stratified Q-Q plots12

and Bayesian hierarchical modeling (fgwas),13 which

assess functional enrichment but are primarily focused

on strong associations and improving mapping power.

These methods did not produce consistent estimates of

h2
g enrichment either in simulations or in real data

(Figure S19–S29), although we note that they have

different objectives. In addition to having implications

for mapping power,12,13,65–68 functional enrichment has

direct implications for fine mapping55,69,70 and risk predic-

tion. Enrichments at the level we observed could substan-

tially reduce the set of potential causal variants in the four

traits we tested by downweighing SNPs in low-heritability

categories. On the other hand, the improvement in poly-

genic risk prediction was limited because of pervasive LD

across categories (Table S28).

Several limitations of our approach remain as avenues for

future work. The variance-component method might still

be subject to subtle biases21,41,42 under disease architectures

or annotations with complex LD structure, although our

analyses indicate that it is generally less biased than pub-

lished methods. In particular, we found that imputed data

might lead to an overestimate of category enrichment

from causal variation very close to that category. For

computational reasons, we did notmake use of themixture

of the normal-effect-size approach, which has been shown

to increase precision.24 The method also requires
er 6, 2014



individual-level genotype data and is computationally

infeasible for extremely large cohorts or a very largenumber

of components, motivating further work on methods that

analyze summary statistics. A limitationof assessing enrich-

ment from GWAS platforms is that we cannot account for

untagged causal variation, which represents roughly half

of total narrow-sense heritability.71 Although we have

shown that rare coding variants are unlikely to alter the

DHS enrichment, themissing heritability could lie in other

categories. The precision of inferred enrichment is also

limited by the underlying annotations and variants. It is

possible that certain biological features could be subject to

systematically poorer variant calling or imputation and

exhibit decreased h2
g as a result of artifacts,72 although we

did not observe substantial differences in the categories

we analyzed. Because of the data available, our meta-anal-

ysis estimates were weighted toward autoimmune traits

both in thenumberof individual studies and in total sample

size; estimates of DHS enrichment were higher in autoim-

mune than in nonautoimmune traits, which could be

partly due to the abundance of hematopoietic cell types

in available DHS annotations. Except for SP, for which

many samples are available,we couldnotprovideprecise es-

timates for single traits. However, we have shown by simu-

lation that the individual estimates and errors were well

calibrated, justifying meta-analysis of estimates that are

not constrained to the plausible 0–1 range (an established

strategy49). Further partitioning of DHSs can yield addi-

tional enrichment, and it is likely that other functional cat-

egories—including additional chromatin marks, histone

modifications, formaldehyde-assisted isolation of regulato-

ry elements, transcription factor binding sites,73 gene

expression,58,74,75 and measures of conservation7—will be

highly informative.
Appendix A

LD

We further interrogated the role of LD and violations of

model assumptions in the variance-component estimate.

We considered two contrived annotations constructed

from either the 16% of SNPs with the most LD partners

or the 16% of SNPs with the fewest LD partners to mimic

a high or low LD category, respectively, approximately

equal in SNP number to the DHS category. Testing the uni-

formly drawn MAF-independent architecture, we again

observed no enrichment for either the high-LD (1.023,

SE ¼ 0.01) or the low-LD (1.023, SE ¼ 0.03) annotations

over 1,000 trials. Finally, we considered a disease architec-

ture in which causal variants were strongly enriched at the

centers of DHSs such that variants in the middle 7% of

the DHS (1% of the genome) explained 25% of the h2
g

and the remaining DHS variants explained 75% of the

h2
g . We observed a slight deflation of the DHS estimate,

but no significant false enrichment, at the neighboring cat-

egories (Figure S20).
The American
Jackknife Estimates of SEs

The analytical SE used for significance testing was accurate

in our simulations (Table S29) and has previously been

shown to be robust in real data21,27 but can be biased

when the number of causal variants is very small.41 We as-

sessed this directly with a weighted-block jackknife esti-

mate76 of the enrichment in the real traits by dropping

each chromosome in turn, constructing new GRMs, and

recomputing the percentage of h2
g for each functional cate-

gory (and the corresponding enrichment). The jackknife

estimate of the enrichment and its variance was then

computed as described in Busing et al.76 Although there

is a demonstrable relationship between chromosome

length and h2
g , we do not expect to observe such a relation-

ship with respect to the percentage of h2
g because of the

normalization. However, this estimate of the variance

does capture true biological variation in enrichment across

chromosomes and is therefore conservative. Although we

observed little difference between the jackknife and stan-

dard estimates in genotyped data (Table S30), the jackknife

estimate of the imputed percentage of h2
g (71%, SE ¼ 7.7%;

Table S31) was indeed more conservative than the analyt-

ical estimate (79%, SE ¼ 6.6%), but the enrichment was

still highly significant (p¼ 5.53 10�13), and the overall re-

sults were not substantially affected. Because the jackknife

makes no assumptions about the underlying distribution

of enrichment, this consistency with the analytical esti-

mate supports the use of REML SEs for case-control data

(see also simulations below).

Ancestry

We found little population structure in all of the traits

except for MS and SP (Figure S1), which have been previ-

ously reported as structured. For the MS cohort, we have

shown previously21 that rigorous ancestry matching did

not substantially change the total or partitioned h2
g . For

the SP cohort, we relied on the consistently replicated

enrichmentacross thePGC2andSwedishSPcohorts,which

havebeen rigorously quality controlled for the avoidance of

population stratification. Recently, Janss et al.77 demon-

strated that h2
g can vary significantly when principal com-

ponents are also included as fixed effects as a function of

thenumber of included eigenvectors. To assess thepresence

of this bias in our Swedish SP data, we recomputed the joint

variance-component estimates of bh2

g while including an

increasing number of eigenvectors as fixed effects. We

observed no significant fluctuation of bh2

g such that the esti-

mates over 1–20 eigenvector covariates had a SD of 0.002,

suggesting a tight estimate unbiased by the fixed effects.

Case-Control Ascertainment

Recent work37,78,79 has shown that liability-scale estimates

of h2
g from REML can be biased downward in dichotomous

traits with strong case-control ascertainment. Golan and

Rosset78 and Hayeck et al.79 propose an alternative esti-

mator based on Haseman-Elston (H-E) regression80 and

show that it eliminates bias. In brief, this approach
Journal of Human Genetics 95, 535–552, November 6, 2014 547



regresses the product of normalized phenotypes on the ge-

netic covariance (off-diagonal GRM entries) for all unique

pairs of samples; the resulting slope is used as an estimate

of the observed-scale h2
g and is converted to the liability

scale. This method can be extended naturally to multiple

components, where the product of phenotypes is regressed

onto GRM entries from each analyzed component in a

multiple linear regression. Here, we compared the method

and transformation of Golan and Rosset78 to the REML

estimator described in the main text. We also evaluated

the impact of incorporating principal components as fixed

effects to account for genetic ancestry. This is particularly

important for the SP and MS cohorts (see below), which

were ascertained in a way that induces correlations be-

tween ancestry and phenotype. All analyses were per-

formed with the same set of GRMs computed from 1000

Genomes imputed data, and the H-E regression (and

H-E regression with fixed effects) was implemented as

described in Golan and Rosset.78 In all instances, we used

analytical error-covariance estimates and rescaled them

with the delta method to compute SEs. (We note that the

SE for H-E regression makes strongly violated assumptions

about independence, and they are therefore only pre-

sented for completeness). We observed little difference be-

tween variance-component methods and H-E regression

methods, and H-E regression yielded an average estimate

1.053 greater than that of REML and an overall r2 ¼ 0.95

between the two methods (across 11 traits; Table S32).

The relative performance was similar when we considered

only the percentage of h2
g from the DHS component (Table

S33) such that H-E regression yielded average estimates

1.043 higher than those of REML and an overall r2 ¼
0.94. When principal components where included as fixed

effects, meta-analysis across traits within each method did

not yield significant differences (Table S34); H-E regression

identified DHS enrichment of 5.83 (SE ¼ 0.45), and REML

identified DHS enrichment of 5.13 (SE ¼ 0.42). When we

did not include principal components as fixed effects, we

observed a large difference between variance components

and H-E regression in the SP and MS cohorts, where liabil-

ity-scale H-E regression estimates of liability-scale h2
g were

10.00 and 2.91, respectively (Table S32), outside the plau-

sible 0–1 bound and vastly larger than REML estimates

without fixed effects. This suggests that H-E-regression-

based estimates might be particularly sensitive to the con-

founding effects of ancestry.

Lastly, we repeated our null simulations by using the

merged WTCCC2 cohort of ~33,000 samples, allowing us

to simulate a case-control ascertainment (327 case and

654 control subjects) at a prevalence of 0.01 (see Table

S35 for simulation details). When we generated ~1,000

samples on chromosome 1 only, this simulated cohort

had an effective SNP-sample ratio (the key quantity driving

the effects of case-control ascertainment37) corresponding

to that of ~10,000 samples genome-wide. We tested a

‘‘polygenic’’ scenario where causal variants were sampled

uniformly, as well as a ‘‘high-effect’’ scenario where DHS
548 The American Journal of Human Genetics 95, 535–552, Novemb
variants had 103 the effect of other SNPs, and found no

significant deviation from the null estimate (Table S35)

or the analytical SE (Table S36). Although ascertainment

has previously been shown to induce correlation between

causal variants, our simulations indicate that this does not

bias estimates of enrichment for the prevalence and sam-

ple size simulated here.
Detailed Analyses of Rare-Variant h2
g

Having identified no significant rare-variant h2
g at any

coding regions, we were interested in quantifying this phe-

nomenon at the set of loci known to be associated with SP.

To do so, we constructed six variance components only

from SNPs at the 22 loci identified by the PGC1 in a large

meta-analysis48 and estimated h2
g jointly with a compo-

nent for the remaining noncoding variants genome-wide

(to account for tagging). As expected, we found the union

of all noncoding GWAS variants at these loci to harbor sig-

nificant heritability of 0.018 (SE¼ 0.004) (Table S37). How-

ever, we did not see any significant heritability from the

coding variants at these classes when they were modeled

jointly with the other component. This is consistent

with our genome-wide finding that common noncoding

variants explained a substantial fraction of trait heritability

and tagged nearly half of the common coding variation.

We also partitioned h2
g at the set of 1,796 ‘‘composite’’

genes reported by Purcell et al.54 to exhibit enrichment

of rare disruptive mutations, modeled jointly with

exome-chip variants in the remaining genes and noncod-

ing GWAS-chip variants as separate components. However,

no significant h2
g was observed at either the entire set of

composite variants (h2
g ¼ 0.014, SE ¼ 0.012) or the rare

composite variants (h2
g ¼ 0.008, SE ¼ 0.012).

We observed a significant enrichment in h2
g at 4,919

(nonsingleton) loss-of-function variants, which collec-

tively accounted for 6.0% of (nonsingleton) exonic

SNPs but explained 24.3% of the exonic h2
g (permuted

p ¼ 0.02 after MAF matching). We saw no significant

enrichment of h2
g at coding sites that were predicted to

be functionally important by PolyPhen-2.52 Comparing

likelihoods between the model where variants were split

into (1) probably damaging and damaging, (2) benign

and other, and (3) noncoding components and the model

with only (1) coding and (2) noncoding components

yielded no significant difference by a 1-degree-of-freedom

likelihood-ratio test (p ¼ 0.13).
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CARDIoGRAM CAD summary statistics, http://www.

cardiogramplusc4d.org/downloads/

DIAGRAM T2D summary statistics, http://diagram-consortium.

org/downloads.html

DNaseI Digital Genomic Footprinting (DGF) annotations,

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeUwDgf/

Exome Chip Design, http://genome.sph.umich.edu/wiki/

Exome_Chip_Design

fgwas, https://github.com/joepickrell/fgwas

Functional annotations, http://www.hsph.harvard.edu/alkes-price/

software/
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complextraitgenomics.com/software/gcta/
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Software.html

IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

NHGRI GWAS catalog, http://www.genome.gov/gwastudies/

Oxford recombination map, http://hapmap.ncbi.nlm.nih.gov/

downloads/recombination/

Psychiatric Genomic Consortium, SwedenþSCZ1 schizophrenia

summary statistics, http://www.med.unc.edu/pgc/downloads

RA summary statistics, http://www.broadinstitute.org/ftp/pub/

rheumatoid_arthritis/Stahl_etal_2010NG/

Segway-chromHMM combined enhancer annotations, ftp://ftp.

ebi.ac.uk/pub/databases/ensembl/encode/

integration_data_jan2011/byDataType/segmentations/jan2011
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