203 research outputs found

    Early brain damage affects body schema and person perception abilities in children and adolescents with spastic diplegia

    Get PDF
    Early brain damage leading to cerebral palsy is associated to core motor impairments and also affects cognitive and social abilities. In particular, previous studies have documented specific alterations of perceptual body processing and motor cognition that are associated to unilateral motor deficits in hemiplegic patients. However, little is known about spastic diplegia (SpD), which is characterized by motorial deficits involving both sides of the body and is often associated to visuospatial, attentional, and social perception impairments. Here, we compared the performance of a sample of 30 children and adolescents with SpD (aged 7-18 years) and of a group of age-matched controls with typical development (TD) at two different tasks tapping on body representations. In the first task, we tested visual and motor imagery abilities as assessed, respectively, by the object-based mental rotation of letters and by the first-person transformations for whole-body stimuli. In the second task, we administered an inversion effect/composite illusion task to evaluate the use of configural/holistic processing of others' body. Additionally, we assessed social perception abilities in the SpD sample using the NEPSY-II battery. In line with previously reported visuospatial deficits, a general mental imagery impairment was found in SpD patients when they were engaged in both object-centered and first-person mental transformations. Nevertheless, a specific deficit in operating an own-body transformation emerged. As concerns body perception, while more basic configural processing (i.e., inversion effect) was spared, no evidence for holistic (i.e., composite illusion) body processing was found in the SpD group. NEPSY-II assessment revealed that SpD children were impaired in both the theory of mind and affect recognition subtests. Overall, these findings suggested that early brain lesions and biased embodied experience could affect higher-level motor cognition and perceptual body processing, thus pointing to a strict link between motor deficits, body schema alterations, and person processing difficulties

    Home-based cognitive training in pediatric patients with acquired brain injury: preliminary results on efficacy of a randomized clinical trial

    Get PDF
    Cognitive rehabilitation may compensate for cognitive deficits of children with acquired brain injury (ABI), capitalizing on the use-dependent plasticity of a developing brain. Remote computerized cognitive training (CCT) may be delivered to patients in ecological settings, ensuring rehabilitation continuity. This work evaluated cognitive and psychological adjustment outcomes of an 8-week multi-domain, home-based CCT (Lumosity Cognitive Training) in a sample of patients with ABI aged 11–16 years. Two groups of patients were engaged in five CCT sessions per week for eight weeks (40 sessions). According to a stepped-wedge research design, one group (Training-first Group) started the CCT immediately, whereas the other group (Waiting-first Group) started the CCT after a comparable time of waiting list. Changes after the training and after the waiting period were compared in the two groups. Both groups improved in visual-spatial working memory more after the training than after the waiting-list period. The Training-first group improved also in arithmetic calculation speed. Findings indicate that a multi-domain CCT can produce benefits in visual-spatial working memory, probably because, in accordance with previous research, computer games heavily tax visuo-spatial abilities. This suggests that the prolonged stimulation of the same cognitive ability may generate the greatest benefits in children with ABI

    Virtual Reality Social Prediction Improvement and Rehabilitation Intensive Training (VR-SPIRIT) for paediatric patients with congenital cerebellar diseases: study protocol of a randomised controlled trial

    Get PDF
    Background: Patients with cerebellar malformations exhibit not only movement problems, but also important deficits in social cognition. Thus, rehabilitation approaches should not only involve the recovery of motor function but also of higher-order abilities such as processing of social stimuli. In keeping with the general role of the cerebellum in anticipating and predicting events, we used a VR-based rehabilitation system to implement a social cognition intensive training specifically tailored to improve predictive abilities in social scenarios (VR-Spirit). Methods/design: The study is an interventional randomised controlled trial that aims to recruit 42 children, adolescents and young adults with congenital cerebellar malformations, randomly allocated to the experimental group or the active control group. The experimental group is administered the VR-Spirit, requiring the participants to compete with different avatars in the reaching of recreational equipment and implicitly prompting them to form expectations about their playing preference. The active control group participates in a VR-training with standard games currently adopted for motor rehabilitation. Both trainings are composed by eight 45-min sessions and are administered in the GRAIL VR laboratory (Motekforce Link, Netherlands), an integrated platform that allows patients to move in natural and attractive VR environments. An evaluation session in VR with the same paradigm used in the VR-Spirit but implemented in a different scenario is administered at the beginning (T0) of the two trainings (T1) and at the end (T2). Moreover, a battery of neurocognitive tests spanning different domains is administered to all participants at T0, T2 and in a follow-up session after 2 months from the end of the two trainings (T3). Discussion: This study offers a novel approach for rehabilitation based on specific neural mechanisms of the cerebellum. We aim to investigate the feasibility and efficacy of a new, intensive, social cognition training in a sample of Italian patients aged 7-25 years with congenital cerebellar malformations. We expect that VR-Spirit could enhance social prediction ability and indirectly improve cognitive performance in diverse domains. Moreover, through the comparison with a VR-active control training we aim to verify the specificity of VR-Spirit in improving social perception skills. Trial registration: ISRCTN, ID: ISRCTN 22332873. Retrospectively registered on 12 March 2018

    Distinct contributions of extrastriate body area and temporoparietal junction in perceiving one's own and others' body.

    Get PDF
    The right temporoparietal cortex plays a critical role in body representation. Here, we applied repetitive transcranial magnetic stimulation (rTMS) over right extrastriate body area (EBA) and temporoparietal junction (TPJ) to investigate their causative roles in perceptual representations of one's own and others' body. Healthy women adjusted size-distorted pictures of their own body or of the body of another person according to how they perceived the body (subjective task) or how others perceived it (intersubjective task). In keeping with previous reports, at baseline, we found an overall underestimation of body size. Crucially, EBA-rTMS increased the underestimation bias when participants adjusted the images according to how others perceived their own or the other woman's body, suggesting a specific role of EBA in allocentric body representations. Conversely, TPJ-rTMS increased the underestimation bias when participants adjusted the body of another person, either a familiar other or a close friend, in both subjective and intersubjective tasks, suggesting an involvement of TPJ in representing others' bodies. These effects were body-specific, since no TMS-induced modulation was observed when participants judged a familiar object. The results suggest that right EBA and TPJ play active and complementary roles in the complex interaction between the perceptions of one's own and other people's body

    Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes

    Get PDF
    Accurate encoding of the spatio-temporal properties of others' actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions ("slow-motion" bias), allowing for more detailed representation of ongoing actions and refined prediction abilities

    Representation of body identity and body actions in extrastriate body area and ventral premotor cortex

    Full text link
    Although inherently linked, body form and body action may be represented in separate neural substrates. Using repetitive transcranial magnetic stimulation in healthy individuals, we show that interference with the extrastriate body area impairs the discrimination of bodily forms, and interference with the ventral premotor cortex impairs the discrimination of bodily actions. This double dissociation suggests that whereas extrastriate body area mainly processes actors' body identity, premotor cortex is crucial for visual discriminations of actions

    My Hand or Yours? Markedly Different Sensitivity to Egocentric and Allocentric Views in the Hand Laterality Task

    Get PDF
    In the hand laterality task participants judge the handedness of visually presented stimuli – images of hands shown in a variety of postures and views - and indicate whether they perceive a right or left hand. The task engages kinaesthetic and sensorimotor processes and is considered a standard example of motor imagery. However, in this study we find that while motor imagery holds across egocentric views of the stimuli (where the hands are likely to be one's own), it does not appear to hold across allocentric views (where the hands are likely to be another person's). First, we find that psychophysical sensitivity, d', is clearly demarcated between egocentric and allocentric views, being high for the former and low for the latter. Secondly, using mixed effects methods to analyse the chronometric data, we find high positive correlation between response times across egocentric views, suggesting a common use of motor imagery across these views. Correlations are, however, considerably lower between egocentric and allocentric views, suggesting a switch from motor imagery across these perspectives. We relate these findings to research showing that the extrastriate body area discriminates egocentric (‘self’) and allocentric (‘other’) views of the human body and of body parts, including hands

    Contorted and ordinary body postures in the human brain

    Get PDF
    Social interaction and comprehension of non-verbal behaviour requires a representation of people’s bodies. Research into the neural underpinnings of body representation implicates several brain regions including extrastriate and fusiform body areas (EBA and FBA), superior temporal sulcus (STS), inferior frontal gyrus (IFG) and inferior parietal lobule (IPL). The different roles played by these regions in parsing familiar and unfamiliar body postures remain unclear. We examined the responses of this body observation network to static images of ordinary and contorted postures by using a repetition suppression design in functional neuroimaging. Participants were scanned whilst observing static images of a contortionist or a group of objects in either ordinary or unusual configurations, presented from different viewpoints. Greater activity emerged in EBA and FBA when participants viewed contorted compared to ordinary body postures. Repeated presentation of the same posture from different viewpoints lead to suppressed responses in the fusiform gyrus as well as three regions that are characteristically activated by observing moving bodies, namely STS, IFG and IPL. These four regions did not distinguish the image viewpoint or the plausibility of the posture. Together, these data define a broad cortical network for processing static body postures, including regions classically associated with action observation

    Food-induced Emotional Resonance Improves Emotion Recognition

    Get PDF
    The effect of food substances on emotional states has been widely investigated, showing, for example, that eating chocolate is able to reduce negative mood. Here, for the first time, we have shown that the consumption of specific food substances is not only able to induce particular emotional states, but more importantly, to facilitate recognition of corresponding emotional facial expressions in others. Participants were asked to perform an emotion recognition task before and after eating either a piece of chocolate or a small amount of fish sauce – which we expected to induce happiness or disgust, respectively. Our results showed that being in a specific emotional state improves recognition of the corresponding emotional facial expression. Indeed, eating chocolate improved recognition of happy faces, while disgusted expressions were more readily recognized after eating fish sauce. In line with the embodied account of emotion understanding, we suggest that people are better at inferring the emotional state of others when their own emotional state resonates with the observed one
    corecore