23 research outputs found

    Strong Evidence of a Combination Polymorphism of the Tyrosine Kinase 2 Gene and the Signal Transducer and Activator of Transcription 3 Gene as a DNA-Based Biomarker for Susceptibility to Crohn’s Disease in the Japanese Population

    Get PDF
    OBJECTIVE: An association between susceptibility to inflammatory bowel disease (IBD) and polymorphisms of both the tyrosine kinase 2 gene (TYK2) and the signal transducer and activator of transcription 3 gene (STAT3) was examined in a Japanese population in order to identify the genetic determinants of IBD. METHODS: The study subjects comprised 112 patients with ulcerative colitis, 83 patients with Crohn's disease (CD), and 200 healthy control subjects. Seven tag single-nucleotide polymorphisms (SNPs) in TYK2 and STAT3 were detected by PCR-restriction fragment length polymorphism. RESULTS: The frequencies of a C allele and its homozygous C/C genotype at rs2293152 SNP in STAT3 in CD patients were significantly higher than those in control subjects (P = 0.007 and P = 0.001, respectively). Furthermore, out of four haplotypes composed of the two tag SNPs (rs280519 and rs2304256) in TYK2, the frequencies of a Hap 1 haplotype and its homozygous Hap 1/Hap1 diplotype were significantly higher in CD patients in comparison to those in control subjects (P = 0.023 and P = 0.024, respectively). In addition, the presence of both the C/C genotype at rs2293152 SNP in STAT3 and the Hap 1/Hap 1 diplotype of TYK2 independently contributes to the pathogenesis of CD and significantly increases the odds ratio to 7.486 for CD (P = 0.0008). CONCLUSION: TYK2 and STAT3 are genetic determinants of CD in the Japanese population. This combination polymorphism may be useful as a new genetic biomarker for the identification of high-risk individuals susceptible to CD

    A critical review of mathematical models and data used in diabetology

    Get PDF
    The literature dealing with mathematical modelling for diabetes is abundant. During the last decades, a variety of models have been devoted to different aspects of diabetes, including glucose and insulin dynamics, management and complications prevention, cost and cost-effectiveness of strategies and epidemiology of diabetes in general. Several reviews are published regularly on mathematical models used for specific aspects of diabetes. In the present paper we propose a global overview of mathematical models dealing with many aspects of diabetes and using various tools. The review includes, side by side, models which are simple and/or comprehensive; deterministic and/or stochastic; continuous and/or discrete; using ordinary differential equations, partial differential equations, optimal control theory, integral equations, matrix analysis and computer algorithms

    GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run

    Get PDF
    The third Gravitational-wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5p_\mathrm{astro} > 0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with pastro>0.5p_\mathrm{astro} > 0.5 are consistent with gravitational-wave signals from binary black holes or neutron star-black hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron star-black hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with pastro>0.5p_\mathrm{astro} > 0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    Abstract: We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 105, 106, 107Mpc3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1-1+12(10-10+52) for binary neutron star mergers, of 0-0+19(1-1+91) for neutron star–black hole mergers, and 17-11+22(79-44+89) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers

    Impurity phases in icosahedral Ag-In-Yb quasicrystal: Influence in surface structure

    No full text
    We present scanning tunnelling microscopy (STM) studies of the fivefold surface of icosahedral (i) Ag-In-Yb quasicrystals grown under different conditions. The sample grown at a slower rate is found to exhibit impurity phases on the surface, whereas a faster growth rate yields a sample with a structurally perfect surface

    Genetic transformation of a hepatoprotective plant, Phyllanthus amarus

    No full text
    Phyllanthus amarus Schum & Thonn. is a source of various pharmacologically active compounds such as phyllanthin, hypophyllanthin, gallic acid, catechin, and nirurin, a flavone glycoside. A genetic transformation method using Agrobacterium tumefaciens was developed for this plant species for the first time. Shoot tips of full grown plants were used as explants for Agrobacteriummediated transformation. Transgenic plants were obtained by co-cultivation of shoot tips explants and A. tumefaciens strain LBA4404 containing the pCAMBIA 2301 plasmid harboring neomycin phosphotransferase II (NPT II) and β- glucuronidase encoding (GUS) genes in the T-DNA region in the presence of 200 μM acetosyringone. Integration of the NPT II gene into the genome of transgenic plants was verified by PCR and Southern blot analyses. Expression of the NPT II gene was confirmed by RT-PCR analysis. An average of 25 explants was used, out of which an average of 19 explants produced kanamycin-resistant shoots, which rooted to produce 13 complete transgenic plants
    corecore