3,557 research outputs found

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Choosing among Partition Models in Bayesian Phylogenetics

    Get PDF
    Bayesian phylogenetic analyses often depend on Bayes factors (BFs) to determine the optimal way to partition the data. The marginal likelihoods used to compute BFs, in turn, are most commonly estimated using the harmonic mean (HM) method, which has been shown to be inaccurate. We describe a new more accurate method for estimating the marginal likelihood of a model and compare it with the HM method on both simulated and empirical data. The new method generalizes our previously described stepping-stone (SS) approach by making use of a reference distribution parameterized using samples from the posterior distribution. This avoids one challenging aspect of the original SS method, namely the need to sample from distributions that are close (in the Kullback–Leibler sense) to the prior. We specifically address the choice of partition models and find that using the HM method can lead to a strong preference for an overpartitioned model. In contrast to the HM method and the original SS method, we show using simulated data that the generalized SS method is strikingly more precise (repeatable BF values of the same data and partition model) and yields BF values that are much more reasonable than those produced by the HM method. Comparisons of HM and generalized SS methods on an empirical data set demonstrate that the generalized SS method tends to choose simpler partition schemes that are more in line with expectation based on inferred patterns of molecular evolution. The generalized SS method shares with thermodynamic integration the need to sample from a series of distributions in addition to the posterior. Such dedicated path-based Markov chain Monte Carlo analyses appear to be a cost of estimating marginal likelihoods accurately

    Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species.

    Get PDF
    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production

    Population history, gene flow, and bottlenecks in island populations of a secondary seed disperser, the southern grey shrike (Lanius meridionalis koenigi)

    Get PDF
    Studying the population history and demography of organisms with important ecological roles can aid understanding of evolutionary processes at the community level and inform conservation. We screened genetic variation (mtDNA and microsatellite) across the populations of the southern grey shrike (Lanius meridionalis koenigi) in the Canary Islands, where it is an endemic subspecies and an important secondary seed disperser. We show that the Canarian subspecies is polyphyletic with L. meridionalis elegans from North Africa and that shrikes have colonized the Canary Islands from North Africa multiple times. Substantial differences in genetic diversity exist across islands, which are most likely the product of a combination of historical colonization events and recent bottlenecks. The Eastern Canary Islands had the highest overall levels of genetic diversity and have probably been most recently and/or frequently colonized from Africa. Recent or ongoing bottlenecks were detected in three of the islands and are consistent with anecdotal evidence of population declines due to human disturbance. These findings are troubling given the shrike's key ecological role in the Canary Islands, and further research is needed to understand the community-level consequences of declines in shrike populations. Finally, we found moderate genetic differentiation among populations, which largely reflected the shrike's bottleneck history; however, a significant pattern of isolation-by-distance indicated that some gene flow occurs between islands. This study is a useful first step toward understanding how secondary seed dispersal operates over broad spatial scales

    Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range

    Get PDF
    Aim To mitigate the threat invasive species pose to ecosystem functioning, reli- able risk assessment is paramount. Spatially explicit predictions of invasion risk obtained through bioclimatic envelope models calibrated with native species distribution data can play a critical role in invasive species management. Fore- casts of invasion risk to novel environments, however, remain controversial. Here, we assess how species’ association with human-modified habitats in the native range and within-taxon niche structure shape the distribution of invasive populations at biogeographical scales and influence the reliability of predictions of invasion risk. Location Africa, Asia and Europe. Methods We use ~1200 native and invasive ring-necked parakeet (Psittacula krameri) occurrences and associated data on establishment success in combi- nation with mtDNA-based phylogeographic structure to assess niche dynam- ics during biological invasion and to generate predictions of invasion risk. Niche dynamics were quantified in a gridded environmental space while bioclimatic models were created using the biomod2 ensemble modelling framework. Results Ring-necked parakeets show considerable niche expansion into climates colder than their native range. Only when incorporating a measure of human modification of habitats within the native range do bioclimatic envelope mod- els yield credible predictions of invasion risk for parakeets across Europe. Inva- sion risk derived from models that account for differing niche requirements of phylogeographic lineages and those that do not achieve similar statistical accu- racy, but there are pronounced differences in areas predicted to be susceptible for invasion. Main conclusions Information on within-taxon niche structure and especially association with humans in the native range can substantially improve predic- tive models of invasion risk. To provide policymakers with robust predictions of invasion risk, including these factors into bioclimatic envelope models is recommended
    corecore