61 research outputs found

    Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks

    Get PDF
    [1] Northern Hemisphere summer temperatures over the past 8000 years have been paced by the slow decrease in summer insolation resulting from the precession of the equinoxes. However, the causes of superposed century-scale cold summer anomalies, of which the Little Ice Age (LIA) is the most extreme, remain debated, largely because the natural forcings are either weak or, in the case of volcanism, short lived. Here we present precisely dated records of ice-cap growth from Arctic Canada and Iceland showing that LIA summer cold and ice growth began abruptly between 1275 and 1300 AD, followed by a substantial intensification 1430– 1455 AD. Intervals of sudden ice growth coincide with two of the most volcanically perturbed half centuries of the past mil-lennium. A transient climate model simulation shows that explosive volcanism produces abrupt summer cooling at these times, and that cold summers can be maintained by sea-ice/ ocean feedbacks long after volcanic aerosols are removed. Our results suggest that the onset of the LIA can be linked to an unusual 50-year-long episode with four large sulfur-rich explosive eruptions, each with global sulfate loading>60 Tg. The persistence of cold summers is best explained by conse-quent sea-ice/ocean feedbacks during a hemispheric summer insolation minimum; large changes in solar irradiance are not required. Citation: Miller, G. H., et al. (2012), Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocea

    Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Get PDF
    ELC was supported while writing this paper by a EU Horizon 2020 Marie Slodowska Curie Fellowship, project BEHAVIOUR-CONNECT, by a Newton Fellowship from the Royal Society of London and Bayesian statistical training was supported by National Science Foundation (award DEB- 1145200). Laboratory analyses conducted by ELC were funded by a small grant from the British Ecological Society 5076 / 6118 and Bayesian analysis was supported by training from the National Science Foundation under Grant No. DEB-1145200. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Founding Council (grant reference HR09011). Genetic data from the South African right whale samples were generated by MB and PJP with the support of UC Berkeley, University of Stockholm and University of Groningen. Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award.Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesis that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation.PostprintPeer reviewe

    Subglacially precipitated carbonates record geochemical interactions and pollen preservation at the base of the Laurentide Ice Sheet on central Baffin Island, eastern Canadian Arctic

    No full text
    Themineralogy and isotopic compositions of subglacially precipitated carbonate crusts (SPCCs) provide information on conditions and processes beneath former glaciers and ice sheets. Here we describe SPCCs formed on gneissic bedrock at the bed of the Laurentide Ice Sheet (LIS) during the last glacial maximum on central Baffin Island. Geochemical data indicate that the Ca in the crusts was likely derived from the subglacial chemical weathering Ca-bearing minerals in the local bedrock. C and Sr isotopic analyses reveal that the C in the calcite was derived predominantly fromolder plant debris. The d18O values of the SPCCs suggest that these crusts formed in isotopic equilibrium with basal ice LIS preserved in the Barnes Ice Cap (BIC). Columnar crystal fabric and the predominance of sparite over micrite in the SPCCs are indicative of carbonate precipitation under open-system conditions. However, the mean d18O value of the calcite crusts is ~10‰ higher than those of primary LIS ice preserved in the BIC, demonstrating that SPCCs record the isotopic composition of only basal ice. Palynomorph assemblages preserved within the calcite and basal BIC ice include species last endemic to the Arctic in the early Tertiary. The source of these palynomorphs remains enigmatic

    Is dietary or microhabitat specialization associated with environmental heterogeneity in horned lizards (Phrynosoma)?

    No full text
    Abstract Niche breadth is predicted to correlate with environmental heterogeneity, such that generalists will evolve in heterogeneous environments and specialists will evolve in environments that vary less over space and time. We tested the hypothesis that lizards in a heterogeneous environment were generalists compared to lizards in a homogeneous environment. We compared niche breadths of greater short‐horned lizards by quantifying resource selection in terms of two different niche axes, diet (prey items and trophic level), and microhabitat (ground cover and shade cover) between two populations occurring at different elevations. We assessed the heterogeneity of dietary and microhabitat resources within each population's environment by quantifying the availability of prey items, ground cover, and shade cover in each environment. Overall, our results demonstrate that despite differences in resource heterogeneity between elevations, resource selection did not consistently differ between populations. Moreover, environmental heterogeneity was not associated with generalization of resource use. The low‐elevation site had a broader range of available prey items, yet lizards at the high‐elevation site demonstrated more generalization in diet. In contrast, the high‐elevation site had a broader range of available microhabitats, but the lizard populations at both sites were similarly generalized for shade cover selection and were similarly specialized for ground cover selection. Our results demonstrate that environmental heterogeneity of a particular resource does not necessarily predict the degree to which organisms specialize on that resource

    Data from: Is dietary or microhabitat specialization associated with environmental heterogeneity in horned lizards (Phrynosoma)?

    No full text
    Niche breadth is predicted to correlate with environmental heterogeneity, such that generalists will evolve in heterogeneous environments and specialists will evolve in environments that vary less over space and time. We tested the hypothesis that lizards in a heterogeneous environment were generalists compared to lizards in a homogeneous environment. We compared niche breadths of greater short-horned lizards by quantifying resource selection in terms of two different niche axes, diet (prey items and trophic level) and microhabitat (ground cover and shade cover), between two populations occurring at different elevations. We assessed the heterogeneity of dietary and microhabitat resources within each population’s environment by quantifying the availability of prey items, ground cover, and shade cover in each environment. Overall, our results demonstrate that despite differences in resource heterogeneity between elevations, resource selection did not consistently differ between populations. Moreover, environmental heterogeneity was not associated with generalization of resource use. The low-elevation site had a broader range of available prey items, yet lizards at the high-elevation site demonstrated more generalization in diet. In contrast, the high-elevation site had a broader range of available microhabitats, but the lizard populations at both sites were similarly generalized for shade cover selection, and were similarly specialized for ground cover selection. Our results demonstrate that environmental heterogeneity of a particular resource does not necessarily predict the degree to which organisms specialize on that resource

    Data from: Reciprocally-transplanted lizards along an elevational gradient match light-environment use of local lizards via phenotypic plasticity

    No full text
    1. Thermoregulatory behaviour enables ectotherms to maintain preferred body temperatures across a range of environmental conditions, and it may buffer individuals against the effects of climate warming. In lizards, the mechanism underlying variation in thermoregulatory behaviour has long been assumed to be phenotypic plasticity, and while this assumption has been difficult to test using wild populations in natural habitat, it has critical implications for how variation in thermoregulation is incorporated in models designed to predict outcomes of climate change on ectotherms. 2. We continuously recorded one component of thermoregulatory behaviour, light-environment use, by two wild populations of desert short-horned lizards (Phrynosoma hernandesi) occurring at low (warm) and high (cool) elevations. We then reciprocally transplanted lizards and recorded their light-environment use when exposed to a novel climate at the transplant site. 3. Immediately following the reciprocal transplant to a novel climate, lizards from both populations adjusted their light-environment use and matched the light-environment use exhibited by local lizards at that site. 4. This study provides direct empirical evidence that lizards can immediately adjust light-environment use, one component of thermoregulatory behaviour, via phenotypic plasticity to match local the local environment. Our results provide hope that lizards may have some capacity to buffer against climate change by adjusting their light-environment use to compensate for warmer environmental temperatures
    • 

    corecore