407 research outputs found

    Mid-infrared interferometry of the massive young stellar object NGC3603 - IRS 9A

    Full text link
    We present observations and models for one of these MYSO candidates, NGC3603 IRS 9A. Our goal is to investigate with infrared interferometry the structure of IRS 9A on scales as small as 200AU, exploiting the fact that a cluster of O and B stars has blown away much of the obscuring foreground dust and gas. Observations in the N-band were carried out with the MIDI beam combiner attached to the VLTI. Additional interferometric observations which probe the structure of IRS 9A on larger scales were performed with an aperture mask installed in the T-ReCS instrument of Gemini South. The spectral energy distribution (SED) is constrained by the MIDI N-band spectrum and by data from the Spitzer Space Telescope. Our efforts to model the structure and SED of IRS 9A range from simple geometrical models of the brightness distribution to one- and two-dimensional radiative transfer computations. The target is resolved by T-ReCS, with an equivalent (elliptical) Gaussian width of 330mas by 280mas (2300 AU by 2000 AU). Despite this fact, a warm compact unresolved component was detected by MIDI which is possibly associated with the inner regions of a flattened dust distribution. Based on our interferometric data, no sign of multiplicity was found on scales between about 200AU and 700AU projected separation. A geometric model consisting of a warm (1000 K) ring (400 AU diameter) and a cool (140 K) large envelope provides a good fit to the data. No single model fitting all visibility and photometric data could be found, with disk models performing better than spherical models. While the data are clearly inconsistent with a spherical dust distribution they are insufficient to prove the existence of a disk but rather hint at a more complex dust distribution.Comment: 8 pages, 11 figures. Accepted for publication in A&

    Metabolic and haemodynamic effects of oral glucose loading in young healthy men carrying the 825T-allele of the G protein β3 subunit

    Get PDF
    BACKGROUND: A C825T polymorphism was recently identified in the gene encoding the β3 subunit of heterotrimeric G-proteins (GNB3). The T-allele is significantly associated with essential hypertension and obesity. In order to further explore a possible pathogenetic link between the T-allele and impaired glucose tolerance we studied metabolic and haemodynamic responses to oral glucose loading in young, healthy subjects with and without the 825T-allele. METHODS: Twelve subjects with and 10 without the 825T-allele were investigated at rest and following glucose ingestion (75 g). Blood glucose, serum insulin and haemodynamics were determined prior to and over 2 hours following glucose ingestion. We non-invasively measured stroke volume (SV, by impedance-cardiography), blood pressure (BP), heart rate (HR), and systolic-time-intervals. Cardiac output (CO) was calculated from HR and SV. Total peripheral resistance was calculated from CO and BP. Metabolic and haemodynamic changes were quantified by maximal responses and by calculation of areas under the concentration time profile (AUC). Significances of differences between subjects with and without the T-allele were determined by unpaired two-tailed t-tests. A p < 0.05 was considered statistically significant. RESULTS: Metabolic and haemodynamic parameters at baseline were very similar between both groups. The presence of the T-allele did not alter the response of any metabolic or haemodynamic parameter to glucose loading. CONCLUSIONS: In conclusion, this study does not support the hypothesis that the C825T polymorphism may serve as a genetic marker of early impaired glucose tolerance

    Overlap of QRPA states based on ground states of different nuclei --mathematical properties and test calculations--

    Get PDF
    The overlap of the excited states in quasiparticle random-phase approximation (QRPA) is calculated in order to simulate the overlap of the intermediate nuclear states of the double-beta decay. Our basic idea is to use the like-particle QRPA with the aid of the closure approximation and calculate the overlap as rigorously as possible by making use of the explicit equation of the QRPA ground state. The formulation is shown in detail, and the mathematical properties of the overlap matrix are investigated. Two test calculations are performed for relatively light nuclei with the Skyrme and volume delta-pairing energy functionals. The validity of the truncations used in the calculation is examined and confirmed.Comment: 17 pages, 15 figures, full paper following arXiv:1205.5354 and Phys. Rev. C 86 (2012) 021301(R

    Probing the centre of the large circumstellar disc in M17

    Full text link
    We investigated the nature of the hitherto unresolved elliptical infrared emission in the centre of the ~20000 AU disc silhouette in M 17. We combined high-resolution JHKsL'M' band imaging carried out with NAOS/CONICA at the VLT with [Fe II] narrow band imaging using SOFI at the NTT. The analysis is supported by Spitzer/GLIMPSE archival data and by already published SINFONI/VLT Integral Field Spectroscopy data. For the first time, we resolve the elongated central infrared emission into a point-source and a jet-like feature that extends to the northeast in the opposite direction of the recently discovered collimated H2 jet. They are both orientated almost perpendicular to the disc plane. In addition, our images reveal a curved southwestern emission nebula whose morphology resembles that of the previously detected northeastern one. Both nebulae are located at a distance of 1500 AU from the disc centre. We describe the infrared point-source in terms of a protostar that is embedded in circumstellar material producing a visual extinction of 60 <= Av <= 82. The observed Ks band magnitude is equivalent to a stellar mass range of 2.8 Msun <= Mstar <= 8 Msun adopting conversions for a main-sequence star. Altogether, we suggest that the large M 17 accretion disc is forming an intermediate to high-mass protostar. Part of the accreted material is expelled through a symmetric bipolar jet/outflow.Comment: 6 pages, 3 figures, accepted by MNRAS (16 May 2008

    The cool atmospheres of the binary brown dwarf eps Indi B

    Full text link
    We have imaged ϵ\epsilon Indi B, the closest brown dwarf binary known, with VISIR at the VLT in three narrow-band mid-infrared bandpasses located around 8.6μ\mum, 10.5μ\mum and 11.3μ\mum. We are able to spatially resolve both components, and determine accurate mid-infrared photometry for both components independently. In particular, our VISIR observations probe the NH3_3 feature in the atmospheres of the cooler and warmer brown dwarfs. For the first time, we can disentangle the contributions of the two components, and find that % our photometry of ϵ\epsilon IndiBb is in good agreement with recent ``cloud-free'' atmosphere models having an effective temperature of Teff=800T_\mathrm{eff}=800 K. With an assumed age of 1 Gyr for the ϵ\epsilon Indi system, component Ba agrees more with Teff1100T_\mathrm{eff} \approx 1100 K rather than with Teff=1200T_\mathrm{eff}=1200 K, as suggested by SPITZER spectroscopic observations of the combined ϵ\epsilon Indi B system (Roellig et al., 2004). Even higher effective temperatures appear inconsistent with our absolute photometry, as they would imply an unphysical small size of the brown dwarf ϵ\epsilon IndiBa.Comment: 4 pages, 2 figure

    Approximation of excitonic absorption in disordered systems using a compositional component weighted CPA

    Full text link
    Employing a recently developed technique of component weighted two particle Green's functions in the CPA of a binary substitutional alloy AcB1cA_cB_{1-c} we extend the existing theory of excitons in such media using a contact potential model for the interaction between electrons and holes to an approximation which interpolates correctly between the limits of weak and strong disorder. With our approach we are also able to treat the case where the contact interaction between carriers varies between sites of different types, thus introducing further disorder into the system. Based on this approach we study numerically how the formation of exciton bound states changes as the strengths of the contact potentials associated with either of the two site types are varied through a large range of parameter values.Comment: 27 pages RevTeX (preprint format), 13 Postscript figure file

    Molecular Outflows and a Mid-Infrared Census of the Massive Star Formation Region Associated with IRAS 18507+0121

    Get PDF
    We have observed the central region of the infrared-dark cloud filament associated with IRAS 18507+0121 at millimeter wavelengths in CO(J = 1-0), ^(13)CO(J = 1-0), and C^(18)O(J = 1-0) line emission and with Spitzer at mid-infrared wavelengths. Five massive outflows from two cloud cores were discovered. Three outflows are centered on or near an ultracompact (UC) H II region (G34.4+0.23), while the remaining two outflows originate from the millimeter core G34.4+0.23 MM. Modeling of the spectral energy distributions of the mid-infrared sources identified 31 young stellar objects in the filament with a combined stellar mass of ~127 ± 27 M_☉. An additional 22 sources were identified as probable cluster members based on the presence of strong 24 μm emission. The total star formation efficiency in the G34.4 cloud filament is estimated to be ~7%, while the massive and intermediate-mass star formation efficiency in the entire cloud filament is estimated to be roughly 2%. A comparison of the gravitational binding energy with the outflow kinetic energy suggests that the compact core containing G34.4+0.23 MM is being destroyed by its molecular outflows, whereas the outflows associated with the more massive core surrounding the G34.4 UC H II region are not likely to totally disrupt the cloud. In addition, a qualitative evaluation of the region appears to suggest that stars in this region may have formed in two stages: first lower mass stars formed and then, a few Myr later, the more massive stars began to form

    The photometric evolution of dissolving star clusters I: First predictions

    Full text link
    We calculated the broad-band photometric evolution of unresolved star clusters, including the preferential loss of low-mass stars due to mass segregation. The stellar mass function of a cluster evolves due to three effects: (a) the evolution of massive stars; (b) early tidal effects reduce the mass function independently of the stellar mass; (c) after mass segregation has completed, tidal effects preferentially remove the lowest-mass stars from the cluster. Results: (1) During the first ~40% of the lifetime of a cluster the cluster simply gets fainter due to the loss of stars by tidal effects. (2) Between ~40 and ~80% of its lifetime the cluster gets bluer due to the loss of low-mass stars. This will result in an underestimate of the age of clusters if standard cluster evolution models are used (0.15 -- 0.5 dex). (3) After ~80% of the total lifetime of a cluster it will rapidly get redder. This is because stars at the low-mass end of the main sequence, which are preferentially lost, are bluer than the AGB stars that dominate the light at long wavelengths, resulting in an age overestimate. (4) Clusters with mass segregation and the preferential loss of low-mass stars evolve along almost the same tracks in colour-colour diagrams as clusters without mass segregation. Therefore it will be difficult to distinguish this effect from that due to the cluster age for unresolved clusters, unless the total lifetime of the clusters can be estimated. (5) The changes in the colour evolution of unresolved clusters due to the preferential loss of low-mass stars will affect the determination of the SFHs. (6) The preferential loss of low-mass stars might explain the presence of old (~13 Gyr) clusters in NGC 4365 which are photometrically disguised as intermediate-age clusters (2 - 5 Gyr). [Abridged]Comment: accepted for publication in A&

    Photon Dominated Regions in NGC 3603

    Get PDF
    Aims: We aim at deriving the excitation conditions of the interstellar gas as well as the local FUV intensities in the molecular cloud surrounding NGC 3603 to get a coherent picture of how the gas is energized by the central stars. Methods: The NANTEN2-4m submillimeter antenna is used to map the [CI] 1-0, 2-1 and CO 4-3, 7-6 lines in a 2' x 2' region around the young OB cluster NGC 3603 YC. These data are combined with C18O 2-1 data, HIRES-processed IRAS 60 and 100 micron maps of the FIR continuum, and Spitzer/IRAC maps. Results: The NANTEN2 observations show the presence of two molecular clumps located south-east and south-west of the cluster and confirm the overall structure already found by previous CS and C18O observations. We find a slight position offset of the peak intensity of CO and [CI], and the atomic carbon appears to be further extended compared to the molecular material. We used the HIRES far-infrared dust data to derive a map of the FUV field heating the dust. We constrain the FUV field to values of \chi = 3 - 6 \times 10^3 in units of the Draine field across the clouds. Approximately 0.2 to 0.3 % of the total FUV energy is re-emitted in the [CII] 158 {\mu}m cooling line observed by ISO. Applying LTE and escape probability calculations, we derive temperatures (TMM1 = 43 K, TMM2 = 47 K), column densities (N(MM1) = 0.9 \times 10^22 cm^-2, N(MM2) = 2.5 \times 10^22 cm^-2) and densities (n(MM1) = 3 \times 10^3 cm^-3, n(MM2) = 10^3 -10^4 cm^-3) for the two observed molecular clumps MM1 and MM2. Conclusions: The cluster is strongly interacting with the ambient molecular cloud, governing its structure and physical conditions. A stability analysis shows the existence of gravitationally collapsing gas clumps which should lead to star formation. Embedded IR sources have already been observed in the outskirts of the molecular cloud and seem to support our conclusions.Comment: 13 pages, 10 figures, accepted for publication by A&
    corecore