261 research outputs found

    Skh1, the MEK component of the mkh1 signaling pathway in Schizosaccharomyces pombe

    Get PDF
    Skip to Next Section We previously reported the identification of Mkh1, a MEK kinase in Schizosaccharomyces pombe that is required for cell wall integrity, and we presented genetic evidence that Pmk1/Spm1, a MAP kinase, functions downstream from Mkh1 in the same pathway. Here, we report the identification of Skh1, a MEK (MAP kinase kinase) in S. pombe. The sequence of Skh1 is nearly identical to that of the recently reported Pek1 sequence. We present biochemical and genetic evidence that Skh1 is the MEK component of the Mkh1-Spm1 MAP kinase cascade. Our yeast two-hybrid results indicate that Mkh1, Skh1, and Spm1 physically interact to form a ternary complex. Deletion of mkh1, skh1 or spm1 results in identical phenotypes, including sensitivity to (beta)-glucanase treatment, growth inhibition on media containing KCl, and filamentous growth on medium containing caffeine. Double mutant strains exhibit phenotypes that are identical to the single mutant strains. Furthermore, expression of an activated HA-Skh1(DD)protein suppressed these defects in mkh1(delta) cells, and overexpression of Spm1 suppressed these defects in skh1(delta) cells. We also show that HA-Spm1 is hyper-phosphorylated on tyrosine residues in cells co-expressing the activated HA-Skh1(DD) protein. Furthermore, we found the phosphorylated/activated form of GFP-HA-Spm1 at detectable levels in wild-type cells, but not at appreciable levels in mkh1(delta) or skh1(delta) cells expressing this fusion protein. Together, our results indicate that Mkh1, Skh1 and Spm1 constitute a MAPK cascade in fission yeast

    Mutual antagonism of target of rapamycin and calcineurin signaling

    Get PDF
    Growth and stress are generally incompatible states. Stressed cells adapt to an insult by restraining growth, and conversely, growing cells keep stress responses at bay. This is evident in many physiological settings, including for example, the effect of stress on the immune or nervous system, but the underlying signaling mechanisms mediating such mutual antagonism are poorly understood. In eukaryotes, a central activator of cell growth is the protein kinase target of rapamycin (TOR) and its namesake signaling network. Calcineurin is a conserved, Ca(2+)/calmodulin-dependent protein phosphatase and target of the immunosuppressant FK506 (tacrolimus) that is activated in yeast during stress to promote cell survival. Here we show yeast mutants defective for TOR complex 2 (TORC2) or the essential homologous TORC2 effectors, SLM1 and SLM2, exhibited constitutive activation of calcineurin-dependent transcription and actin depolarization. Conversely, cells defective in calcineurin exhibited SLM1 hyperphosphorylation and enhanced interaction between TORC2 and SLM1. Furthermore, a mutant SLM1 protein (SLM1(DeltaC14)) lacking a sequence related to the consensus calcineurin docking site (PxIxIT) was insensitive to calcineurin, and SLM1(Delta)(C14) slm2 mutant cells were hypersensitive to oxidative stress. Thus, TORC2-SLM signaling negatively regulates calcineurin, and calcineurin negatively regulates TORC2-SLM. These findings provide a molecular basis for the mutual antagonism of growth and stress

    Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9.

    Get PDF
    Protein phosphorylation cascades play a central role in the regulation of cell growth and protein kinases PKA, Sch9 and Ypk1 take center stage in regulating this process in S. cerevisiae To understand how these kinases co-ordinately regulate cellular functions we compared the phospho-proteome of exponentially growing cells without and with acute chemical inhibition of PKA, Sch9 and Ypk1. Sites hypo-phosphorylated upon PKA and Sch9 inhibition were preferentially located in RRxS/T-motifs suggesting that many are directly phosphorylated by these enzymes. Interestingly, when inhibiting Ypk1 we not only detected several hypo-phosphorylated sites in the previously reported RxRxxS/T-, but also in an RRxS/T-motif. Validation experiments revealed that neutral trehalase Nth1, a known PKA target, is additionally phosphorylated and activated downstream of Ypk1. Signaling through Ypk1 is therefore more closely related to PKA- and Sch9-signaling than previously appreciated and may perform functions previously only attributed to the latter kinases

    Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity

    Get PDF
    Membrane contact sites (MCS) between the endoplasmic reticulum (ER) and the plasma membrane (PM) play fundamental roles in all eukaryotic cells. ER-PM MCS are particularly abundant in Saccharomyces cerevisiae, where approximately half of the PM surface is covered by cortical ER (cER). Several proteins, including Ist2, Scs2/22, and Tcb1/2/3 are implicated in cER formation, but the specific roles of these molecules are poorly understood. Here, we use cryo-electron tomography to show that ER-PM tethers are key determinants of cER morphology. Notably, Tcb proteins (tricalbins) form peaks of extreme curvature on the cER membrane facing the PM. Combined modeling and functional assays suggest that Tcb-mediated cER peaks facilitate the transport of lipids between the cER and the PM, which is necessary to maintain PM integrity under heat stress. ER peaks were also present at other MCS, implying that membrane curvature enforcement may be a widespread mechanism to regulate MCS function

    Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae

    Get PDF
    Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li+. Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic geneti

    Dual action antifungal small molecule modulates multidrug efflux and TOR signaling.

    Get PDF
    There is an urgent need for new strategies to treat invasive fungal infections, which are a leading cause of human mortality. Here, we establish two activities of the natural product beauvericin, which potentiates the activity of the most widely deployed class of antifungal against the leading human fungal pathogens, blocks the emergence of drug resistance, and renders antifungal-resistant pathogens responsive to treatment in mammalian infection models. Harnessing genome sequencing of beauvericin-resistant mutants, affinity purification of a biotinylated beauvericin analog, and biochemical and genetic assays reveals that beauvericin blocks multidrug efflux and inhibits the global regulator TORC1 kinase, thereby activating the protein kinase CK2 and inhibiting the molecular chaperone Hsp90. Substitutions in the multidrug transporter Pdr5 that enable beauvericin efflux impair antifungal efflux, thereby impeding resistance to the drug combination. Thus, dual targeting of multidrug efflux and TOR signaling provides a powerful, broadly effective therapeutic strategy for treating fungal infectious disease that evades resistance

    Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains

    Get PDF
    Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in wine production. One of the main problems in this process is the deficiency of nitrogen sources in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen consumption and metabolism are under active inquiry, with emphasis on the study of the TORC1 signalling pathway, given its central role responding to nitrogen availability and influencing growth and cell metabolism. However, the mechanism by which different nitrogen sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 activation by nitrogen sources are time-consuming, making difficult the analyses of large numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was developed based on the luciferase reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains representative of the clean lineages described so far in S. cerevisiae. The activation of the TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). Regardless the different molecular readouts obtained with both methodologies, the general results showed a wide phenotypic variation between the representative strains analysed. Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the differential TORC1 pathway activation, allowing to interrogate a larger number of strains in the context of nitrogen metabolism phenotypic differences

    TOR and PKA Pathways Synergize at the Level of the Ste11 Transcription Factor to Prevent Mating and Meiosis in Fission Yeast

    Get PDF
    [Background]: In the fission yeast Schizosaccharomyces pombe, the TOR (target of rapamycin) and PKA (protein kinase A) signaling transduction pathways regulate the expression of genes required for cell growth and sexual differentiation in response to the nutritional environment. Inhibition of Tor2 signaling results in the induction of genes involved in sexual differentiation, and the cells undergo mating and meiosis, even under good nutritional conditions. The same phenotype is observed in mutants in which the PKA pathway is inactive. By contrast, Tor2 overexpression or mutations that hyperactivate PKA signaling impair sexual differentiation, even under poor nutritional conditions. Accordingly, a very important question is to understand the molecular mechanism by which these two pathways coordinately regulate gene expression in response to nutrients. [Methodology/Principal Findings]: Here we demonstrate that TOR and PKA pathways operate coordinately to negatively regulate sexual differentiation by inhibiting the nuclear accumulation of the Ste11 transcription factor. However, the Tor2 pathway is unable to block the nuclear localization of Ste11 under good nutritional conditions when the PKA pathway is inactive. Using microarray analyses, we found that both pathways inhibit sexual differentiation by blocking ste11-dependent gene expression. [Conclusions/Significance]: We conclude that both the PKA and the TOR pathways inhibit Ste11 nuclear accumulation to repress Ste11-dependent gene expression. However, the PKA pathway plays a quantitatively more important role than the TOR pathway in this process.N.V. is supported by a postdoctoral grant from the Carlos III Institute, Ministerio de Sanidad. Our group is supported by grants from la Junta de Castilla y Leon (Grupo de Excelencia grant GR265) and the Spanish Ministry of Science and Innovation (BFU2008-01808 and Consolider Ingenio CSD2007-00015).Peer reviewe
    corecore