406 research outputs found

    Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies

    Get PDF
    To study potential consequences of climate-induced changes in the biotic disturbance regime at regional to national scale we integrated a model of Ips typographus (L. Scol. Col.) damages into the large-scale forest scenario model EFISCEN. A two-stage multivariate statistical meta-model was used to upscale stand level damages by bark beetles as simulated in the hybrid forest patch model PICUS v1.41. Comparing EFISCEN simulations including the new bark beetle disturbance module against a 15-year damage time series for Austria showed good agreement at province level (R² between 0.496 and 0.802). A scenario analysis of climate change impacts on bark beetle-induced damages in Austria¿s Norway spruce [Picea abies (L.) Karst.] forests resulted in a strong increase in damages (from 1.33 Mm³ a¿1, period 1990¿2004, to 4.46 Mm³ a¿1, period 2095¿2099). Studying two adaptive management strategies (species change) revealed a considerable time-lag between the start of adaptation measures and a decrease in simulated damages by bark beetle

    Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios

    Get PDF
    BACKGROUND: Forests play an important role in the global carbon flow. They can store carbon and can also provide wood which can substitute other materials. In EU27 the standing biomass is steadily increasing. Increments and harvests seem to have reached a plateau between 2005 and 2010. One reason for reaching this plateau will be the circumstance that the forests are getting older. High ages have the advantage that they typical show high carbon concentration and the disadvantage that the increment rates are decreasing. It should be investigated how biomass stock, harvests and increments will develop under different climate scenarios and two management scenarios where one is forcing to store high biomass amounts in forests and the other tries to have high increment rates and much harvested wood. RESULTS: A management which is maximising standing biomass will raise the stem wood carbon stocks from 30 tC/ha to 50 tC/ha until 2100. A management which is maximising increments will lower the stock to 20 tC/ha until 2100. The estimates for the climate scenarios A1b, B1 and E1 are different but there is much more effect by the management target than by the climate scenario. By maximising increments the harvests are 0.4 tC/ha/year higher than in the management which maximises the standing biomass. The increments until 2040 are close together but around 2100 the increments when maximising standing biomass are approximately 50 % lower than those when maximising increments. Cold regions will benefit from the climate changes in the climate scenarios by showing higher increments. CONCLUSIONS: The results of this study suggest that forest management should maximise increments, not stocks to be more efficient in sense of climate change mitigation. This is true especially for regions which have already high carbon stocks in forests, what is the case in many regions in Europe. During the time span 2010-2100 the forests of EU27 will absorb additional 1750 million tC if they are managed to maximise increments compared if they are managed to maximise standing biomass. Incentives which will increase the standing biomass beyond the increment optimal biomass should therefore be avoided. Mechanisms which will maximise increments and sustainable harvests need to be developed to have substantial amounts of wood which can be used as substitution of non sustainable materials

    Genetic structure and introgression in riparian populations of Populus alba L.

    Get PDF
    White poplar (Populus alba) is a widespread species of the northern hemisphere. Introgressed populations or hybrid zones with the related species of the European aspen (Populus tremula) have been suggested as potential venues for the identification of functionally important variation for germplasm conservation, restoration efforts and tree breeding. Data on the genetic diversity and structure of introgressed P. alba are available only for sympatric populations from central Europe. Here, clonality, introgression and spatial genetic patterns were evaluated in three riparian populations of P. alba along the Ticino, Paglia-Tevere and Cesano river drainages in Italy. Samples of all three populations were typed for five nuclear microsatellite markers and 137 polymorphic amplified fragment length polymorphisms. Microsatellite-based inbreeding co-efficients (FIS) were significantly positive in all three populations. Genetic diversity was consistently highest in Ticino, the population with the highest level of introgression from P. tremula. Population differentiation (FST) was low between the Ticino valley in northern Italy and the Cesano valley in central Italy and between the central Italian populations of Cesano and Paglia-Tevere, consistent with a role of the Appenine mountain range as a barrier to gene flow between adjacent drainage areas. Introgression was not the primary determinant of within-population spatial genetic structure (SGS) in the studied populations

    Adaptive introgression facilitate adaptation to high latitudes in European aspen (Populus tremula L.)

    Get PDF
    Understanding local adaptation has become a key research area given the ongoing climate challenge and the concomitant requirement to conserve genetic resources. Perennial plants, such as forest trees, are good models to study local adaptation given their wide geographic distribution, largely outcrossing mating systems and demographic histories. We evaluated signatures of local adaptation in European aspen (Populus tremula) across Europe by means of whole genome re-sequencing of a collection of 411 individual trees. We dissected admixture patterns between aspen lineages and observed a strong genomic mosaicism in Scandinavian trees, evidencing different colonization trajectories into the peninsula from Russia, Central and Western Europe. As a consequence of the secondary contacts between populations after the last glacial maximum (LGM), we detected an adaptive introgression event in a genome region of ∟500kb in chromosome 10, harboring a large-effect locus that has previously been shown to contribute to adaptation to the short growing seasons characteristic of northern Scandinavia. Demographic simulations and ancestry inference suggest an Eastern origin - probably Russian - of the adaptive Nordic allele which nowadays is present in a homozygous state at the north of Scandinavia. The strength of introgression and positive selection signatures in this region is a unique feature in the genome. Furthermore, we detected signals of balancing selection, shared across regional populations, that highlight the importance of standing variation as a primary source of alleles that facilitate local adaptation. Our results therefore emphasize the importance of migration-selection balance underlying the genetic architecture of key adaptive quantitative traits

    Environmental Assessment of Soil for Monitoring Volume I: Indicators & Criteria

    Get PDF
    The ENVASSO Project (Contract 022713) was funded 2006-8, under the European Commission 6th Framework Programme of Research, with the objective of defining and documenting a soil monitoring system appropriate for soil protection at continental level. The ENVASSO Consortium, comprising 37 partners drawn from 25 EU Member States, reviewed soil indicators, identified existing soil inventories and monitoring programmes in the Member States, designed and programmed a database management system to capture, store and supply soil profile data, and drafted procedures and protocols appropriate for inclusion in a European soil monitoring network of sites that are geo-referenced and at which a qualified sampling process is or could be conducted. Volume I, one of six describing the results of the ENVASSO Project, identifies 290 potential indicators relating to 188 key issues for the following nine threats to soil: erosion, organic matter decline, contamination, sealing, compaction, loss of biodiversity, salinisation, landslides and desertification. Sixty candidate indicators that address 27 key issues, covering all these threats, were selected on the basis of their thematic relevance, policy relevance and data availability. Baseline and threshold values are presented and detailed Fact Sheets describe three priority indicators for each soil threat.JRC.DDG.H.7-Land management and natural hazard

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants

    Europe’s wood supply in disruptive times. An evidence-based synthesis report.

    Get PDF
    In the face of climate change, geopolitical disruption, and current demographic developments, the future supply of wood from European forests has become a highly relevant topic of interest for many stakeholders. The urgency of this issue has unveiled itself in recent years more than ever before. It is indispensable that effective measures are implemented already now to respond to current and future changes. However, to enable meaningful actions, a solid evidence base is crucial. Against this background, a group of internationally renowned experts from across a range of scientific backgrounds and disciplines carried out this comprehensive study titled ‘Europe’s wood supply in disruptive times’ in the framework of the science-business platform TEAMING UP 4 FORESTS. When analysing the existing scientific evidence and preparing this study, the authors were guided by the questions identified at Think Tank Meetings and a Stakeholder Dialogue convened by the platform. This study does not only illuminate individual aspects of the availability of wood but also provides an overall picture of multiple factors influencing wood supply and their complex interrelationships. Furthermore, the second part of this publication has a strong implementation-oriented focus which empowers stakeholders to truly put science into practice

    Multiple ITS Copies Reveal Extensive Hybridization within Rheum (Polygonaceae), a Genus That Has Undergone Rapid Radiation

    Get PDF
    During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation
    • …
    corecore