22 research outputs found

    Vaccine antigens modulate the innate response of monocytes to Al(OH)3.

    Get PDF
    Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNÎł, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level

    Poster display IV experimental and instrumentation

    Get PDF

    Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications

    No full text
    International audienceDue to its independency to the substrate used, Soft mold NanoImprint Lithography (S-NIL) is a technique of great interestin particular for the fabrication of optical devices. We demonstrate a mature pathway for the fabrication of optical filtersfrom the conception to the optical characterization. Those filters can be fabricated on large surfaces (up to 600 diameterwafers) with high conformity on various substrates. Quality of the transfer will be discussed throughout the process andoptical performances compared to those obtained with classical techniques. In this paper we fabricated tunable spectralfilters with a grating periodicity down to 260 nm and imprint surfaces up to 600. Physical conformity of the gratings will bediscussed in terms of long-range stitching obtained on 600 Si hard mold, dimensional shrinkage during thermal NanoImprinton Zeonor(R) soft mold and conformity towards patterned hard mold throughout the process

    Structural, optical, and dielectric properties of Bi(1.5-x)Zn(0.92-y)Nb(1.5)O(6.92-δ) thin films grown by PLD on R-plane sapphire and LaAlO3 substrates

    No full text
    International audienceBi(1.5-x)Zn(0.92-y)Nb(1.5)O(6.92-δ) thin films have the potential to be implemented in microwave devices. This work aims to establish the effect of the substrate and of the grain size on the optical and dielectric properties. Bi(1.5-x)Zn(0.92-y)Nb(1.5)O(6.92-δ) thin films were grown at 700 °C via pulsed-laser deposition on R-plane sapphire and (100)(pc) LaAlO(3) substrates at various oxygen pressures (30, 50, and 70 Pa). The structure, morphology, dielectric and optical properties were investigated. Despite bismuth and zinc deficiencies, with respect to the Bi(1.5)Zn(0.92)Nb(1.5)O(6.92) stoichiometry, the films show the expected cubic pyrochlore structure with a (100) epitaxial-like growth. Different morphologies and related optical and dielectric properties were achieved, depending on the substrate and the oxygen pressure. In contrast to thin films grown on (100)(pc) LaAlO(3), the films deposited on R-plane sapphire are characterized by a graded refractive index along the layer thickness. The refractive index (n) at 630 nm and the relative permittivity (ε(r)) measured at 10 GHz increase with the grain size: on sapphire, n varies from 2.29 to 2.39 and ε(r) varies from 85 to 135, when the grain size increases from 37 nm to 77 nm. On the basis of this trend, visible ellipsometry can be used to probe the characteristics in the microwave range quickly, nondestructively, and at a low cost
    corecore