141 research outputs found

    Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?

    Get PDF
    Processes that can produce states of broken chiral symmetry are of particular interest to physics, chemistry and biology. Chiral symmetry breaking during crystallization of sodium chlorate occurs via the production of secondary crystals of the same handedness from a single "mother crystal" that seeds the solution. Here we report that a large and "symmetric" population of D- and L-crystals moves into complete chiral purity disappearing one of the enantiomers. This result shows: (i) a new symmetry breaking process incompatible with the hypothesis of a single "mother crystal"; (ii) that complete symmetry breaking and chiral purity can be achieved from an initial system with both enantiomers. These findings demand a new explanation to the process of total symmetry breaking in crystallization without the intervention of a "mother crystal" and open the debate on this fascinating phenomenon. We present arguments to show that our experimental data can been explained with a new model of "complete chiral purity induced by nonlinear autocatalysis and recycling".Comment: 5 pages, 4 figures, Added reference

    The truth and beauty of chemical potentials

    Get PDF
    This essay in honour of Mike Brown addresses aspects of chemical equilibrium and equilibration in rocks, with a focus on the role that chemical potentials play. Chemical equilibrium is achieved by diffusive attening of chemical potential gradients. The idea of equilibration volume is developed, and the way equilibration volumes may evolve along a pressure-temperature path is discussed. The effect of the environment of an equilibration volume is key to understanding the evolution of the equilibration volume with changing conditions. The likely behaviour of equilibration volumes is used to suggest why preservation of equilibrium mineral assemblages and mineral compositions from metamorphism tends to occur. This line of logic then provides the conceptual support to conventional equilibrium thermodynamic approaches to studying rocks, using, for example, thermobarometry and pseudosections.PostprintPeer reviewe

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    A 4D view on the evolution of metamorphic dehydration reactions

    Get PDF
    Metamorphic reactions influence the evolution of the Earth's crust in a range of tectonic settings. For example hydrous mineral dehydration in a subducting slab can produce fluid overpressures which may trigger seismicity. During reaction the mechanisms of chemical transport, including water expulsion, will dictate the rate of transformation and hence the evolution of physical properties such as fluid pressure. Despite the importance of such processes, direct observation of mineral changes due to chemical transport during metamorphism has been previously impossible both in nature and in experiment. Using time-resolved (4D) synchrotron X-ray microtomography we have imaged a complete metamorphic reaction and show how chemical transport evolves during reaction. We analyse the dehydration of gypsum to form bassanite and H2O which, like most dehydration reactions, produces a solid volume reduction leading to the formation of pore space. This porosity surrounds new bassanite grains producing fluid-filled moats, across which transport of dissolved ions to the growing grains occurs via diffusion. As moats grow in width, diffusion and hence reaction rate slow down. Our results demonstrate how, with new insights into the chemical transport mechanisms, we can move towards a more fundamental understanding of the hydraulic and chemical evolution of natural dehydrating systems

    Mass transfer in the lower crust: Evidence for incipient melt assisted flow along grain boundaries in the deep arc granulites of Fiordland, New Zealand

    Get PDF
    Knowledge of mass transfer is critical in improving our understanding of crustal evolution, however mass transfer mechanisms are debated, especially in arc environments. The Pembroke Granulite is a gabbroic gneiss, passively exhumed from depths of >45 km from the arc root of Fiordland, New Zealand. Here, enstatite and diopside grains are replaced by coronas of pargasite and quartz, which may be asymmetric, recording hydration of the gabbroic gneiss. The coronas contain microstructures indicative of the former presence of melt, supported by pseudosection modeling consistent with the reaction having occurred near the solidus of the rock (630–710°C, 8.8–12.4 kbar). Homogeneous mineral chemistry in reaction products indicates an open system, despite limited metasomatism at the hand sample scale. We propose the partial replacement microstructures are a result of a reaction involving an externally derived hydrous, silicate melt and the relatively anhydrous, high-grade assemblage. Trace element mapping reveals a correlation between reaction microstructure development and bands of high-Sr plagioclase, recording pathways of the reactant melt along grain boundaries. Replacement microstructures record pathways of diffuse porous melt flow at a kilometer scale within the lower crust, which was assisted by small proportions of incipient melt providing a permeable network. This work recognizes melt flux through the lower crust in the absence of significant metasomatism, which may be more common than is currently recognized. As similar microstructures are found elsewhere within the exposed Fiordland lower crustal arc rocks, mass transfer of melt by diffuse porous flow may have fluxed an area >10,000 km2
    corecore