82 research outputs found
Urban traffic from the perspective of dual graph
In this paper, urban traffic is modeled using dual graph representation of
urban transportation network where roads are mapped to nodes and intersections
are mapped to links. The proposed model considers both the navigation of
vehicles on the network and the motion of vehicles along roads. The road's
capacity and the vehicle-turning ability at intersections are naturally
incorporated in the model. The overall capacity of the system can be quantified
by a phase transition from free flow to congestion. Simulation results show
that the system's capacity depends greatly on the topology of transportation
networks. In general, a well-planned grid can hold more vehicles and its
overall capacity is much larger than that of a growing scale-free network.Comment: 7 pages, 10 figure
A statistical mechanics description of environmental variability in metabolic networks
Many of the chemical reactions that take place within a living cell are irreversible. Due to evolutionary pressures, the number of allowable reactions within these systems are highly constrained and thus the resulting metabolic networks display considerable asymmetry. In this paper, we explore possible evolutionary factors pertaining to the reduced symmetry observed in these networks, and demonstrate the important role environmental variability plays in shaping their structural organization. Interpreting the returnability index as an equilibrium constant for a reaction network in equilibrium with a hypothetical reference system, enables us to quantify the extent to which a metabolic network is in disequilibrium. Further, by introducing a new directed centrality measure via an extension of the subgraph centrality metric to directed networks, we are able to characterise individual metabolites by their participation within metabolic pathways. To demonstrate these ideas, we study 116 metabolic networks of bacteria. In particular, we find that the equilibrium constant for the metabolic networks decreases significantly in-line with variability in bacterial habitats, supporting the view that environmental variability promotes disequilibrium within these biochemical reaction system
Statistical mechanics of topological phase transitions in networks
We provide a phenomenological theory for topological transitions in
restructuring networks. In this statistical mechanical approach energy is
assigned to the different network topologies and temperature is used as a
quantity referring to the level of noise during the rewiring of the edges. The
associated microscopic dynamics satisfies the detailed balance condition and is
equivalent to a lattice gas model on the edge-dual graph of a fully connected
network. In our studies -- based on an exact enumeration method, Monte-Carlo
simulations, and theoretical considerations -- we find a rich variety of
topological phase transitions when the temperature is varied. These transitions
signal singular changes in the essential features of the global structure of
the network. Depending on the energy function chosen, the observed transitions
can be best monitored using the order parameters Phi_s=s_{max}/M, i.e., the
size of the largest connected component divided by the number of edges, or
Phi_k=k_{max}/M, the largest degree in the network divided by the number of
edges. If, for example the energy is chosen to be E=-s_{max}, the observed
transition is analogous to the percolation phase transition of random graphs.
For this choice of the energy, the phase-diagram in the [,T] plane is
constructed. Single vertex energies of the form
E=sum_i f(k_i), where k_i is the degree of vertex i, are also studied.
Depending on the form of f(k_i), first order and continuous phase transitions
can be observed. In case of f(k_i)=-(k_i+c)ln(k_i), the transition is
continuous, and at the critical temperature scale-free graphs can be recovered.Comment: 12 pages, 12 figures, minor changes, added a new refernce, to appear
in PR
Phase transitions in contagion processes mediated by recurrent mobility patterns
Human mobility and activity patterns mediate contagion on many levels,
including the spatial spread of infectious diseases, diffusion of rumors, and
emergence of consensus. These patterns however are often dominated by specific
locations and recurrent flows and poorly modeled by the random diffusive
dynamics generally used to study them. Here we develop a theoretical framework
to analyze contagion within a network of locations where individuals recall
their geographic origins. We find a phase transition between a regime in which
the contagion affects a large fraction of the system and one in which only a
small fraction is affected. This transition cannot be uncovered by continuous
deterministic models due to the stochastic features of the contagion process
and defines an invasion threshold that depends on mobility parameters,
providing guidance for controlling contagion spread by constraining mobility
processes. We recover the threshold behavior by analyzing diffusion processes
mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary
Information; Nature Physics (2011
Mesoscopic structure conditions the emergence of cooperation on social networks
We study the evolutionary Prisoner's Dilemma on two social networks obtained
from actual relational data. We find very different cooperation levels on each
of them that can not be easily understood in terms of global statistical
properties of both networks. We claim that the result can be understood at the
mesoscopic scale, by studying the community structure of the networks. We
explain the dependence of the cooperation level on the temptation parameter in
terms of the internal structure of the communities and their interconnections.
We then test our results on community-structured, specifically designed
artificial networks, finding perfect agreement with the observations in the
real networks. Our results support the conclusion that studies of evolutionary
games on model networks and their interpretation in terms of global properties
may not be sufficient to study specific, real social systems. In addition, the
community perspective may be helpful to interpret the origin and behavior of
existing networks as well as to design structures that show resilient
cooperative behavior.Comment: Largely improved version, includes an artificial network model that
fully confirms the explanation of the results in terms of inter- and
intra-community structur
Spatial correlations in attribute communities
Community detection is an important tool for exploring and classifying the
properties of large complex networks and should be of great help for spatial
networks. Indeed, in addition to their location, nodes in spatial networks can
have attributes such as the language for individuals, or any other
socio-economical feature that we would like to identify in communities. We
discuss in this paper a crucial aspect which was not considered in previous
studies which is the possible existence of correlations between space and
attributes. Introducing a simple toy model in which both space and node
attributes are considered, we discuss the effect of space-attribute
correlations on the results of various community detection methods proposed for
spatial networks in this paper and in previous studies. When space is
irrelevant, our model is equivalent to the stochastic block model which has
been shown to display a detectability-non detectability transition. In the
regime where space dominates the link formation process, most methods can fail
to recover the communities, an effect which is particularly marked when
space-attributes correlations are strong. In this latter case, community
detection methods which remove the spatial component of the network can miss a
large part of the community structure and can lead to incorrect results.Comment: 10 pages and 7 figure
A Metric of Influential Spreading during Contagion Dynamics through the Air Transportation Network
The spread of infectious diseases at the global scale is mediated by long-range human travel. Our ability to predict the impact of an outbreak on human health requires understanding the spatiotemporal signature of early-time spreading from a specific location. Here, we show that network topology, geography, traffic structure and individual mobility patterns are all essential for accurate predictions of disease spreading. Specifically, we study contagion dynamics through the air transportation network by means of a stochastic agent-tracking model that accounts for the spatial distribution of airports, detailed air traffic and the correlated nature of mobility patterns and waiting-time distributions of individual agents. From the simulation results and the empirical air-travel data, we formulate a metric of influential spreading––the geographic spreading centrality––which accounts for spatial organization and the hierarchical structure of the network traffic, and provides an accurate measure of the early-time spreading power of individual nodes
Networking - A Statistical Physics Perspective
Efficient networking has a substantial economic and societal impact in a
broad range of areas including transportation systems, wired and wireless
communications and a range of Internet applications. As transportation and
communication networks become increasingly more complex, the ever increasing
demand for congestion control, higher traffic capacity, quality of service,
robustness and reduced energy consumption require new tools and methods to meet
these conflicting requirements. The new methodology should serve for gaining
better understanding of the properties of networking systems at the macroscopic
level, as well as for the development of new principled optimization and
management algorithms at the microscopic level. Methods of statistical physics
seem best placed to provide new approaches as they have been developed
specifically to deal with non-linear large scale systems. This paper aims at
presenting an overview of tools and methods that have been developed within the
statistical physics community and that can be readily applied to address the
emerging problems in networking. These include diffusion processes, methods
from disordered systems and polymer physics, probabilistic inference, which
have direct relevance to network routing, file and frequency distribution, the
exploration of network structures and vulnerability, and various other
practical networking applications.Comment: (Review article) 71 pages, 14 figure
Recommended from our members
Balancing the popularity bias of object similarities for personalised recommendation
Network-based similarity measures have found wide applications in recommendation algorithms and made signicant contributions for uncovering users' potential interests. However, existing measures are generally biased in terms of popularity, that the popular objects tend to have more common neighbours with others and thus are considered more similar to others. Such popularity bias
of similarity quantification will result in the biased recommendations, with either poor accuracy or poor diversity. Based on the bipartite network modelling of the user-object interactions, this paper firstly calculates the expected number of common neighbours of two objects with given popularities in random networks. A Balanced Common Neighbour similarity index is accordingly developed
by removing the random-driven common neighbours, estimated as the expected number, from the total number. Recommendation experiments in three data sets show that balancing the popularity bias in a certain degree can significantly improve the recommendations' accuracy and diversity
simultaneously
Chimera-like states in modular neural networks
Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ?, we also employ other measures of coherence, such as the chimera-like ? and metastability ? indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks
- …
