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Abstract

The spread of infectious diseases at the global scale is mediated by long-range human travel. Our ability to predict the
impact of an outbreak on human health requires understanding the spatiotemporal signature of early-time spreading from
a specific location. Here, we show that network topology, geography, traffic structure and individual mobility patterns are all
essential for accurate predictions of disease spreading. Specifically, we study contagion dynamics through the air
transportation network by means of a stochastic agent-tracking model that accounts for the spatial distribution of airports,
detailed air traffic and the correlated nature of mobility patterns and waiting-time distributions of individual agents. From
the simulation results and the empirical air-travel data, we formulate a metric of influential spreading––the geographic
spreading centrality––which accounts for spatial organization and the hierarchical structure of the network traffic, and
provides an accurate measure of the early-time spreading power of individual nodes.
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Introduction

The study of complex systems as networks has revolutionized

many disciplines in physics and the social and natural sciences [1–

4]. The spreading of infectious diseases is an important example

that illustrates the societal impact of global connectivity in man-

made transportation systems [5,6]. Outbreaks expose the vulner-

ability of current human mobility systems, and challenge our

ability to predict the likelihood of a global pandemic, and to

mitigate its consequences [7].

Network models of epidemic spreading have rationalized our

understanding of how diseases propagate through a mobile

interactome like the human population. ‘‘Fermionic’’ models

regard each node as an individual, or a perfectly homogeneous

community. In these models, the epidemic threshold for disease

spreading vanishes in (infinite-size) scale-free networks, owing to

the broad degree distribution [8,9]. ‘‘Bosonic’’, or metapopulation,

models conceptualize nodes as subpopulations that can be

occupied by a collection of individuals [10,11]. Metapopulation

network models thus recognize that spreading of a disease within a

node is not instantaneous. Here we adopt a metapopulation-

network approach, precisely because of the interacting timescales

for traffic-driven transport between nodes and contagion kinetics

within nodes.

It has been shown recently that advection-driven transport, or

bias, in complex networks exerts a fundamental control on agent

spreading [12], leading to anomalous growth of the mean square

displacement, in contrast with purely diffusive processes. The

crucial role of traffic-driven transport has also been pointed out in

the context of epidemic spreading [13], where it has been shown to

directly affect epidemic thresholds.

Given that epidemic spreading is mediated by human travel,

and that individual human mobility is far from being random [14–

16], it is natural to ask how the non-Markovian nature of

individual mobility affects contagion dynamics. A model of

recurrent mobility patterns characterized by a return rate to the

individual’s origin has recently been incorporated into an

otherwise diffusive random-walk metapopulation network model

[17,18]. A mean-field approximation, as well as Monte Carlo

agent-based simulations of the process, reveal a transition

separating global invasion from extinction, and show that this

transition is heavily influenced by the exponent of the network’s

degree distribution [17].

The impact of behavioral changes on the invasion threshold and

global attack have recently been analyzed in the context of an SIR

infection model [19]. In that study it is shown how individual re-

routing strategies, where individuals modify their travel paths to

avoid infected nodes, influence the invasion threshold and global

levels of infection. It is found that selfish individual behavior can

have a detrimental effect on society as a whole by inducing a larger

fraction of infected nodes, suggesting that the concept of price of

anarchy in transportation networks [20] operates also during disease

spreading at the system level.

Taken together, these previous results reflect an emphasis on the

asymptotic late-time behavior of contagion processes, typically

characterized by infection thresholds and the fraction of infected

nodes for both ‘‘fermionic’’ [13,21] and ‘‘bosonic’’ networks

[10,11,17,19], but leave open the question of what the early-time
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behavior is [22]. Here, we address this question by developing a

framework for contagion dynamics on a metapopulation network

that incorporates geographic and traffic information, as well as the

time-resolved collective transport behavior of individual stochastic

agents that carry the disease. Resolving the temporal dynamics is

critical to capture the nontrivial interplay between the transport

and reaction timescales.

In this article, we present a new metric to identify and rank

influential spreaders of infectious diseases in human transportation

networks. Our metapopulation model of contagion dynamics is

based on a time-resolved stochastic description of individual agent

mobility through the air transportation system. The model is

traffic-driven, and agents traverse the network following empirical

stochastic rules that reflect the patterns of individual human

mobility [15,16]. These rules include exploration and preferential

visit [16], and distributions of waiting times between successive

flights that depend on demography. We show that the late-time

spreading, as measured by the global attack, depends strongly on

traffic and heterogeneity of transition times. We are interested in

characterizing, a priori, the early-time spreading potential of

individual nodes, as measured by the total square displacement

of infected agents. We find that existing metrics of influential

spreading––including connectivity [1], betweenness centrality [23]

and k-shell rank [24]––do not successfully capture the spreading

ability of individual nodes, as revealed by Monte Carlo

simulations. We show that the origin of this disparity lies on the

role of geography and traffic on the network [25], and we propose

a new metric––the geographic spreading centrality––tailored to

early-time spreading in complex networks with spatial imbedding

and heterogeneous traffic structure.

Results

Stochastic Model of Agent Mobility
Air transportation data. We develop a stochastic model of

human mobility through a US-centric air transportation network.

We use air-travel data provided by the Federal Aviation

Administration (www.faa.gov) that includes all flights from all

domestic and international airlines with at least one origin or

destination inside the US (including Alaska and Hawaii), for the

period between January 2007 and July 2010. Note that we do not

have traffic information about flights whose origin and destination

is outside the US. The air transportation network is a space-

embedded network with 1833 airports, or nodes, and approx-

imately 50,000 connections, or directed links (Fig. 1a). It is a highly

heterogeneous network with respect to the degree k (or

connectivity) of each node, the population associated with each

node, as well as the traffic volume through the links of the network

[13,23]. The traffic data is organized in two datasets: ‘‘Market’’

and ‘‘Segment’’. The Market dataset counts trips as origin-to-final-

destination, independently of the number of intermediate

connecting fights. The Segment dataset counts passengers between

pairs of airports, without consideration of the origin and final

destination of the whole trip. For example, a passenger that travels

from Boston (BOS) to Anchorage (ANC), with connecting flight at

Seattle (SEA), would be counted only once in the Market dataset

as a passenger from BOS to ANC. In the Segment dataset,

however, the passenger would be counted both in the segment

BOS-SEA, and in the segment SEA-ANC. From these datasets we

extract two weighted matrices that characterize the network

traffic: a traffic flux matrix Wf ~½wf
ij � where w

f
ij is the yearly

passenger traffic from origin i to destination j; and a traffic

transport matrix Wt~½wt
ij � where wt

ij is the yearly passenger traffic

in the segment from airport i to airport j.

In addition to the aggregate traffic data, we use information of

individual itineraries, provided by a major US airline for domestic

trips [26]. This dataset extends over a period of four months in

2004 and includes 3.2 million tickets. We use it to extract the

waiting time distribution at final destinations and at connecting

airports (Fig. 1b).

Empirical model. We use the data to build an empirical

model of human mobility through the air transportation network.

To each airport i, we assign a population Pi by an empirical

relation [27], Pi*
ffiffiffiffiffi
Ti

p
, which reflects a correlation between

population and yearly total outgoing traffic at that airport,

Ti~
P

j w
f
ij . Therefore, each individual agent in the model has

a ‘‘home airport’’ [17,19].

Individual agents traverse the network following empirical

stochastic rules. Initially, before individuals build up a travel

history, each individual positioned at their ‘‘home airport’’ chooses

a destination airport with probability proportional to the traffic

flux [13,19], Pij*w
f
ij . Since the flux matrix accounts for trips in

which the individual remains under the same flight number, we

allow for an agent choosing some other destination with a small

probability, Pik*minj w
f
ij .

The agent then establishes an itinerary, or space-time trajectory,

to reach the destination. We make the ansatz that the route chosen

minimizes a cost function, which generally increases with the

cumulative time-in-transit and the monetary cost of the ticket.

Given that the trip elapsed time correlates well with the number of

connections and the physical travelled distance, and that ticket

price decreases with route traffic, we use the following empirical

cost function associated with origin i and destination j:

Cij~
X

allsegments

dd
kl

(wt
kl)

e , ð1Þ

where dkl is the physical distance of the segment k?l (accounting

for the sphericity of the Earth), and the exponents d and e lie on

the value ranges 0:1vdv0:3 and 0:1vev0:5. Which trip route is

selected depends on the particular values of d and e. The ranges of

values for these two parameters are chosen on the basis of

producing itineraries that closely match those from real itinerary

data [26]. To incorporate in our model the uniqueness of each

passenger’s needs, we choose a unique combination of these two

exponents for each individual. This reflects the current endemic

heterogeneity in route selection from the wide range of connec-

tions, airline and price choices.

When an agent is off ground, we assume he moves between

airports with a constant velocity of 650 km/h. When not flying, an

agent can be at one of three distinct places: at their home node, at

a connecting airport, or at a destination. The waiting times of an

individual at each of these locations is clearly very different. We

obtain waiting time distributions for connecting airports and final

destinations from the individual mobility dataset [26], which

indeed reflect a very different mean waiting time: in the order of a

few hours at connecting airports, and a few days at destinations

(Fig. 1b). Since the dataset lacks individual travel history, we

cannot extract waiting times at the home airport, and we assume

they are normally distributed [10,17] with mean

�tth
i *Pi=Ti*T

{1=2
i and standard deviation sth

i
*�tth

i , which recog-

nizes that the average person in densely populated areas travels

more often. This is based on the empirical relation between total

traffic and population of an area [27]. For simplicity, we truncate

the home waiting time distribution from below at th~1 day.

Metric of Influential Spreading during Contagion
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An important aspect of our empirical model is the stochastic

pattern of individual mobility that we implement. Initially,

during a ‘‘training period’’ of *1 year, we let all agents choose

destinations according to a traffic-weighted probability, as

explained earlier (Fig. 1c). However, it is by now well

established that individual mobility patterns are far from

random [15] and that their statistics can be reproduced with

two rules, exploration and preferential visit [16], which we

introduce after the training period, once individuals have built

some travel history (Fig. 1d). During exploration, an agent visits

a new airport with probability PE~rS{c, where S is the

number of airports an agent has visited in the past. We use

c~0:21+0:02 and r (r§0) from a Gaussian distribution with

mean r~0:6 and standard deviation sr~0:09, values that fit

human mobility patterns from real mobile phone data [16]. In

the absence of comprehensive data for individual long-range

travel history, we make the assumption that the parameters used

to reproduce local human mobility can be applied for long

range travel. The new airport is chosen according to traffic

from node i. During preferential visit, the agent selects a

previously-visited airport with complementary probability

PR~1{PE . For an agent with home at airport i, the

probability Pij of visiting an airport j is proportional to the

frequency fj of previous visits to that location, Pij
~fjfj . Because the

travel history built by individuals is mediated by traffic, the

mobility model with exploration and preferential visit honors

the initial traffic flux matrix.

Monte Carlo Simulations of Disease Spreading
For a single ‘mobility’ realization, we run our empirical model

of human mobility through the air transportation network with

5|105 agents that are initially distributed in different ‘‘home’’

subpopulations. During an initial period of one year (training

period), the agents are forced to choose destinations according to

the traffic flux matrix. During this training period each individual

develops a history of mobility patterns. Collectively, the mobility

patterns honor the aggregate traffic structure from the dataset.

During the second year, we incorporate the exploration and

preferential-visit rules to assign destinations to individual agents.

We use a time step of 0.5 hours, which we have confirmed is

sufficient to resolve the temporal dynamics of the traffic-driven

contagion process. For a given ‘mobility’ realization, we simulate

the ‘reaction’ process as follows: we apply the SIR compartmental

model at a randomly chosen time during the first half of the

second year by infecting 10 individuals. In the study of late-time

global attack, those 10 individuals are selected randomly across the

entire network. For the study of early-time spreading, they are

selected from the same subpopulation. For the Monte Carlo study,

we average the results over 20 mobility and 200 reaction

realizations.

Reference Models
Our empirical model of human mobility through the air

transportation network incorporates a number of dependencies

that reflect the complex spatiotemporal structure of collective

human dynamics. To understand which of these dependencies are

Figure 1. Pictorial view of the key elements of our empirical model of human mobility through the air transportation network. (a)
World map with the location of the 1833 airports in the US database from the Federal Aviation Administration (www.faa.gov). (b) Waiting time
distributions at connecting and destination airports (from [26]), and at the ‘‘home’’ airport. (c) Illustration of a 1-year travel history of an individual
with ‘‘home’’ at San Francisco International Airport (SFO). (d) Graphical representation of the probabilities for exploration and preferential visit of the
same individual, after the 1-year ‘‘training period.’’ During exploration the agent visits a new airport while during preferential visit the agent visits a
previously-visited place with probability proportional to the frequency of previous visits to that location.
doi:10.1371/journal.pone.0040961.g001
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essential, and which affect the modeling results to a lesser degree,

we consider four different models of increasing complexity.

In Model 1, we consider the US air transportation network but

retain only information about the topology of the network. We

model mobility as a simplified diffusion process, in which all

individuals perform a synchronous random walk, moving from one

node to another, all at the same rate [10,11]. We choose this rate

to be the average rate at which individuals travel in our empirical

model. Under these assumptions, all nodes with the same degree k
have the same behavior. We assign to each node a population

corresponding to the stationary state, predicted by the mean-field

theory [11]: for a node of degree k, Nk~ �NNk=SkT, where SkT
denotes the mean of the degree distribution Pk(k), and
�NN~

P
k NkPk(k) is the average nodal population.

In Model 2, we extend Model 1 by incorporating heterogeneity

in the transition rates, as evidenced by the traffic data. To each

node i we assign a transition rate si*T
1=2
i , but individuals still

select a destination randomly, with probability 1=ki.

In Model 3, we extend Model 2 by enforcing that destination

selection by individuals is done according to traffic: the probability

of an individual at node i selecting destination j is proportional to

w
f
ij .

In Model 4, we extend Model 3 by considering a simplified

model of recurrent mobility patterns [17,19]. Each individual is

initially assigned to a ‘‘home’’ node. Individuals perform a random

walk through the network of quenched transition rates and

heterogeneous traffic, but return to their original subpopulation

with a single recurrent rate t{1 [17]. We select t~7 days,

corresponding to the mean waiting time at destination airports

obtained from actual data [26].

Several important differences exist between the reference

models described above and our empirical model of human

mobility. For instance, the reference models all discard geographic

information. They also all assume that agent displacements are

instantaneous and synchronous, taking place at discrete time

integers (e.g. one day), and neglect the large heterogeneity in

waiting times. We will see that resolving these spatio-temporal

processes, while not critical for late-time measures of disease

spreading, is essential in the early-time contagion dynamics.

Global Attack
To study the dynamics of disease spreading through the air

transportation network, we use the Susceptible–Infected–Recov-

ered (SIR) contagion model. This model divides each sub-

population into a number of healthy (or susceptible, S), infected

(I ) and recovered (R) individuals, and it is characterized by a

contagion reaction, SzI ��?b 2I , and a recovery reaction,

I ��?m R, where b and m are the infection and recovery reaction

rates, respectively, defined as the number of newly infected (resp.

recovered) individuals per unit time for each initial infectious

individual in a fully-susceptible subpopulation. Let

(Si(t),Ii(t),Ri(t)) be the number of individuals in each class in

node i at time t, which satisfy Si(t)zIi(t)zRi(t):Ni at all times.

Under the assumption of homogeneous mixing within a city, the

probabilities for a susceptible individual to become infected is

PS?I~1{(1{bDt=Ni)
Ii , and for an infected individual to

recover is PI?R~mDt, which reflect the dependence on the time

step Dt. According to these rules, the expected increment in the

infected and recovered populations at time tzDt are

DIi~bDtIi(t)Si(t)=Ni and DRi~mDtIi(t), respectively, assuming

that during the reaction step Dt the subpopulation does not

experience inflow or outflow of individuals. In our model,

however, we track the state of each individual in the network.

The reproductive number R0~b=m determines the ratio of newly

infected to newly recovered individuals in a homogeneous, well-

mixed and fully-susceptible population. From this observation

follows the classic result on the epidemic threshold in a single

population, R0w1. Much work has been devoted to the study of

epidemic thresholds in metapopulation networks [10,11,17],

which generally shows that the reproductive number must be

greater than 1 for global spreading of an outbreak.

We apply the SIR contagion model to the four reference models

described above and to our empirical mobility model. We employ

the global attack, defined as the asymptotic (late-time) fraction of the

population affected by the outbreak, as our measure of the

incidence of the epidemic. We initialize the disease with a small

number of infected individuals randomly chosen from the whole

population. We obtain representative statistics by performing a

Monte Carlo study and averaging over many realizations.

We find that the global attack is quite sensitive to the degree of

fidelity of the metapopulation mobility model, especially in the range

of low reproductive numbers (Fig. 2). Naturally, the global attack

increases with R0 for all models. There is a dramatic difference in the

global attack between Models 1 and 2, highlighting the critical

influence of quenched disorder in the transition rates si out of

individual subpopulations. The global attack increases also from

Model 2 to Model 3, reflecting the super-diffusive anomalous nature

of spreading when agent displacements are driven by traffic, as

opposed to a diffusive random walk [12,13]. In comparison with

these two effects––quenched disorder in transition rates and traffic-

driven spreading––recurrent individual mobility patterns [17,19]

have a relatively mild influence on the global attack, as evidenced by

the differences between Models 3 and 4. We observe that the

additional complexity included in our empirical model––geographic

information, high-fidelity individual mobility, and time-resolved

agent displacements––induces a slight delay in the epidemic

threshold with respect to Models 3 and 4, indicating the nontrivial

dependence of contagion dynamics on human mobility.

Influential Spreaders
Finding measures of power and centrality of individuals has been

a primary interest of network science [28,29]. The very mechanism

of preferential attachment shapes the growth and topology of real-

world networks [1], indicating that the degree of a node is a natural

measure of its influence on the network dynamics. Another

traditional measure of a node’s influence is the betweenness

centrality, defined as the number of shortest paths that cross through

this node [28]. Betweenness centrality does not always correlate

strongly with the degree, the air transportation network being

precisely an example of poor correlation between the two [23]. It has

been shown, however, that certain dynamic processes such as SIS or

SIR epidemic spreading in complex networks appear to be

controlled by a subset of nodes that do not necessarily have the

highest degree or the largest betweenness [24].

Here we revisit what is meant by spreading, and make a crucial

distinction between the asymptotic late-time behavior––which has

been studied more extensively––and the early-time dynamics, for

which much less is known. We show that the two behaviors are

controlled by different mechanisms and, as a result, require

different measures of spreading.

Influential spreaders at late times. We perform numerical

simulations of epidemic spreading in our model by initializing the

SIR compartmental model with infectious individuals at one single

subpopulation. We compare the asymptotic, late-time spreading

ability of different subpopulations by means of the global attack of

the SIR epidemic (Fig. 3a). We study low values of the

Metric of Influential Spreading during Contagion
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reproductive number R0, between 1 and 1.5, because the relative

differences among different sources of infection are largest in this

limit. Recent outbreaks of influenza A are estimated to lie within

this range [30]. We rank the 40 major airports in the United States

in terms of their asymptotic global attack, after aggregating the

ranking over the range of reproductive numbers studied (Fig. 3b).

The ability of a node to spread an epidemic depends on fast

dispersal of agents to many other nodes, thereby increasing the

probability of infectious individuals contacting a large population

before they recover. Thus, intuitively, the asymptotic spreading

ability of a node increases with its traffic and connectivity. In fact,

we find that both degree and traffic provide fair rankings of

influential late-time spreaders because in the air transportation

network both quantities are strongly correlated (Fig. 3b, inset).

Influential spreaders at early times. Late-time measures

of spreading, such as the asymptotic global attack, cannot capture

the details of early-time contagion dynamics. The vigor of initial

spreading, however, is likely the crucial aspect in the assessment

and implementation of remedial action for highly contagious

diseases [7], when the reaction and transport timescales are

comparable.

The natural measure of physical spreading is the total square

displacement (TSD) of the infected agents,

TSD~
XNI

j~1

(xj{SxT)2 ð2Þ

where NI is the total number of infected individuals at time t, xj is

the position of the infected individual j, and SxT denotes the

position of the center of mass of infected individuals. The TSD

increases with time as the infected agents, initially all in the same

node, spread through the air transportation network by traffic and

contact individuals at the connecting and destination nodes.

We compare the TSD for 40 major airports in the US, 10 days

after the infection starts at each of those airports, and a

reproductive number R0~1:5. The random walk described by

the infected agents is asynchronous (heterogeneous travel times

and waiting times), traffic-driven (quenched disorder in the

network fluxes), non-Markovian (recurrent individual mobility

patterns) and non-conservative (appearance and disappearance of

infected agents due to infection and recovery). This complexity

requires that the transport and contagion processes be time-

resolved, an essential feature of our model.

We rank all 40 airports according to their TSD at early times.

The curve of ordinal ranking vs. normalized TSD is markedly

concave, indicating that only a handful of airports are very good

spreaders (Fig. 4). The list of early-time super-spreaders is led by J.

F. Kennedy (JFK), Los Angeles International (LAX), Honolulu

(HNL), San Francisco (SFO), Newark Liberty (EWR), Chicago

O’Hare (ORD) and Washington Dulles (IAD).

We perform a sensitivity analysis with respect to the reproduc-

tive number, R0, and the number of days after which the TSD is

measured (Fig. 5). Clearly, a higher reproductive number leads to

a more aggressive spread of the disease, and therefore larger values

of the total square displacement at the same time. From its

definition, it is also clear that the TSD increases with time, at least

until saturation. Importantly, while the absolute value of TSD

depends strongly on the R0 and the time of calculation, the

ranking of influential spreaders according to TSD appears to be

rather insensitive to these parameters, at least for times in the

order t*5{20 days (Fig. 5b).

It is instructive to compare the TSD-ranking curve with the

rankings provided by existing metrics of centrality and influential

Figure 2. Monte Carlo study of the global attack of an epidemic as a function of the reproductive number R0, for the different
models explained in the text. We used a value of the recovery rate m{1~4 days. We initialized the epidemic with 10 infected individuals
chosen randomly across the network. We used a population of 5|105 individuals, and average our results over 200 realizations. (Inset) The global
attack for larger values of R0 exhibits smaller differences among models, except for those between annealed and quenched transition rates at the
nodes, as evidenced by the simulation results of Model 1 vs. the other models.
doi:10.1371/journal.pone.0040961.g002

Metric of Influential Spreading during Contagion
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spreading, including the normalized degree [1] (Fig. 6a), traffic

(Fig. 6b), betweenness centrality [23] (Fig. 6c) and k-shell centrality

[24] (Fig. 6d). Similar results to those from total traffic are obtained

with the eigenvector centrality of the weighted mobility matrix (not

shown). All of these metrics deviate significantly from the empirical

simulations. For instance, HNL causes large physical spreading,

even though it is the airport with the second lowest number of

connections, and its traffic is only ~20% of that of Atlanta

International (ATL). Equally surprising is that ATL has both the

largest degree and the largest traffic, yet it comes in 8th place, with

an early-time spreading power as low as ~30% that of the best

spreader (Fig. 6a,b). Betweenness centrality is able to identify the

poor spreaders, but does not provide accurate ranking or

spreading power among the good ones (Fig. 6c). For example,

Anchorage International (ANC) has the largest betweenness

centrality, yet it ranks low as an early-time spreader. The k-shell

centrality, which has recently been proposed as an effective metric

for identifying influential spreaders at late-time [24], gives no

information about early-time spreading (Fig. 6d).

Geographic spreading centrality. It is clear that existing

metrics of influential spreading do not properly capture the early-

time spreading behavior. We hypothesize that the main reason for

this disparity is that they do not account for geographic

information and the network’s traffic spatial organization. To test

this hypothesis we develop two null networks. As opposed to the

reference models presented earlier, which were introduced to

incorporate an increasing degree of realism and identify key

factors affecting the late-time global attack, the null networks

employ the same empirical model, but modify specific aspects of the

network to test whether they have an important bearing on early-

time spreading. Null network 1 has the same degree and traffic

distributions as the original air transportation network, but

changes the geographical information by randomizing the identity

of the nodes. In null network 2, we eliminate the traffic quenched

disorder by homogenizing outgoing probabilities across the nodes’

links, but preserving the position of the nodes. We apply the same

mobility and epidemic models and we rank the same airports

according to TSD. We find that these rankings are always, for

each realization of the null networks, profoundly dissimilar to that

of the original network (Fig. 7a). This confirms the importance of

the geographic location of airports, which affects spreading

directionality, and the importance of traffic heterogeneity, which

affects the routing dynamics, suggesting that both spatial relations

and traffic structure are critical elements in early-time spreading.

We also performed a comparison between the detailed empirical

model and a model that is identical in all aspects except in that it

employs a simpler mobility model. In the simplified model, all agents

behave statistically in the same way, with no travel history and with a

single return rate (equal to the inverse of the mean waiting time at

destinations). The choice of destination from a given origin is

random, weighted by traffic from the origin-destination database. A

constant time step Dt~1 day is used, therefore removing the

detailed mobility dynamics. We find that, while the evolution of the

TSD does depend on the details of the mobility model, the ranking of

spreading power exhibits little dependence (Fig. 7b), suggesting that

individual mobility patterns can be neglected in the construction of a

simple metric of influential spreading.

In the light of these observations, we propose a new metric to

characterize the ability of an airport to spread an infection

spatially at early times, the geographic spreading centrality (GSC). We

express the vector of airport spreading centralities CG~fcG,ig as.

CG~
X?
m~0

1

2m
Vm

" #
S~Sz

1

2
VSz

1

22
V2Sz � � � , ð3Þ

where V~½vij � is the normalized traffic flux matrix, with

vij~w
f
ij=Ti, and where S~fsjg is the vector of airport spreading

strengths [31], defined as

Figure 3. Late-time spreading ability of different airports, measured by the global attack of an SIR epidemic that originates at each
airport. (a) Global attack as a function of reproductive number, for five different airports (see inset). We initialize the disease by infecting 10
randomly chosen individuals inside the subpopulation of consideration. We use m{1~4 days. Each point is the result of a Monte Carlo study
averaging over 200 reaction and 20 mobility realizations and using 5|105 individuals. (b) Ranking of the 40 major airports in US in terms of their
spreading ability measured by the normalized global attack. We compare the normalized global-attack ranking curve (black diamonds) to the ones
that result from considering the airport’s normalized degree (magenta squares) and the airport’s normalized traffic (brown triangles). Also shown is
the ranking of the airports shown in (a). Both degree and traffic provide effective rankings of influential late-time spreaders, which in this case can be
understood from the good cross-correlation between the two (inset).
doi:10.1371/journal.pone.0040961.g003
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Figure 4. Ranking of influential spreaders by the normalized early-time mean square displacement of infectious individuals. We
initialize the disease by infecting 10 individuals from each specific airport (see inset), and use m{1~4 days. Each point is the result of a Monte Carlo
study averaging over 100 reaction and 20 mobility realizations and using 5|105 individuals. (Inset) Graphical representation of the mean position of
infected individuals, 10 days after the outbreak from three different locations. The circle radius denotes the geographic extension of the infectious
cloud (as measured by the square root of the Mean Square Displacement [12] of infected individuals) while their color represents the number of
infected at the same time (dark colors denote large number of infected).
doi:10.1371/journal.pone.0040961.g004

Figure 5. Ranking of influential spreaders by the normalized early-time Total Square Displacement. (a) for different reproductive
numbers, 10 days after the disease is initiated. (b) at different times after the initiation of the disease. We use R0~1:5 and m{1~4 days. Each point in
the above plots is the result of a Monte Carlo study averaging over 100 reaction and 20 mobility realizations and using 5|105 individuals.
doi:10.1371/journal.pone.0040961.g005
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sj~
Tj

kj

Xkj

l~1

djl : ð4Þ

The spreading strength is a local measure that accounts for the

node’s traffic, degree, and spatial scale of influence. The overall

spreading ability of a node, however, must reflect the spreading

strength of its neighbors, its neighbors’ neighbors, and so on. This

notion has led to the classical understanding of the centrality of a

node as a generalized eigenvalue problem [29], from which our

definition of GSC in Eq. 3 follows naturally.

We compare the airport rankings predicted by GSC with those

obtained from the model simulations, and find excellent quanti-

tative agreement (Fig. 8), suggesting that GSC is a reliable a priori

metric of influential early-time spreaders.

To quantify the correlation between the ranking provided by

the TSD and the centrality measures, we use the Kendall tau (t)

rank coefficient [32]. This correlation coefficient indicates how

rankings from two quantities are qualitatively correlated and takes

a value of {1 if the two rankings are negatively correlated, 0 if the

two rankings are independent, and z1 if they are positively

correlated. The correlation coefficient of the rankings by TSD and

connectivity (Fig. 6a) is equal to 0.53, by TSD and Traffic (Fig. 6b)

is equal to 0.57, by TSD and betweenness centrality (Fig. 6c) is

0.48 and by TSD and k-shell centrality (Fig. 6d) is {0.02. The

ranking by the proposed centrality (GSC) and by TSD (Fig. 8) are

correlated with a Kendall tau of 0.87.

It is worth discussing the spreading power of specific airports in

the light of the GSC ranking. Classical measures of centrality, such

as total traffic or connectivity, would suggest that Atlanta

International airport (ATL) would have the largest spreading

ability. This is clearly not the case, as it ranks 8th in terms of

spreading power. The reason is that much of that traffic is of

regional nature, within North America, and that many of the

connected airports are not, themselves, strong spreaders. The

GSC metric allows for a rationalization of the surprising fact that

an airport like Honolulu (HNL) ranks third in early-time

spreading, very close to JFK and LAX. Despite having a relatively

Figure 6. Ranking of influential early-time spreaders by existing metrics. Shown are the results from the model simulations (black triangles),
and comparison with the ranking provided by existing metrics of centrality and late-time influential spreading. (a) Normalized degree. (b) Normalized
traffic. (c) Normalized betweenness centrality. (d) Normalized k-shell centrality.
doi:10.1371/journal.pone.0040961.g006
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low connectivity (Fig. 6a) and total traffic (Fig. 6b), HNL combines

three important features that catalyze contagion spreading: (1) it is

dominated by long-range travel; (2) it is well connected to other

massive hubs, which are themselves powerful spreaders; and (3) it

is geographically located such that East-West travel is balanced,

thereby maximizing TSD growth. Importantly, these aspects are

all captured in the definition of the geographic spreading centrality

(Fig. 8).

Figure 7. Role of spatial organization, traffic quenched disorder, and mobility patterns, on early-time spreading. (a) Shown is the TSD-
ranking for individual realizations of two null networks testing the influence of (1) geographic locations of the nodes, and (2) heterogeneity in the
traffic of the links. The dissimilarity between those rankings and that from the original network model strongly suggests that any effective measure of
influential early-time spreaders must incorporate geography and traffic quenched disorder. (b) TSD-ranking for a simplified model of human mobility.
Removing the detailed patterns of mobility affects the evolution of the predicted TSD (see inset for HNL airport) but does not affect the early-time
spreading ranking significantly.
doi:10.1371/journal.pone.0040961.g007

Figure 8. Ranking of influential spreaders at early times from the geographic spreading centrality (GSC). The GSC metric predictions
are in quantitative agreement with the results from the Monte Carlo study on the empirical model.
doi:10.1371/journal.pone.0040961.g008
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Discussion

Characterizing the early-time behavior of epidemic spreading is

critical to inform decisions during public-health emergencies, and

to design regulations aimed at mitigating global pandemics. Here,

we show that subpopulations that act as powerful spreaders of

infectious diseases at early times––identified by the TSD during

the first 10 days of the contagion–– differ significantly from the

central spreaders in terms of the late-time global attack.

Simulating the infectious dynamics during the initial stages of

spreading requires a modeling framework in which transport and

contagion processes are time-resolved. We develop a stochastic-

agent mobility model through the air transportation network that

relies on 3 years of US-centric air travel data and four months of

individual travel itineraries. We use this database to build

empirical distributions of waiting times at connecting airports

and final destinations, and train the model to reproduce the

recurrent mobility patterns of individuals. Our analysis demon-

strates that the detailed spatiotemporal signatures of individual

mobility patterns collectively impact epidemic spreading, especial-

ly in the range of low reproductive numbers.

Existing metrics of influential spreaders in networks were not

designed to characterize the early-time spreading behavior. Here

we propose a new metric, the geographic spreading centrality,

which accounts for the local strength in terms of the node’s traffic,

degree and spatial scale of influence, as well as its global role

within the network by incorporating the strength of its neighbors.

This metric is able to successfully rank influential spreaders at early

times, as evidenced by the agreement between the metric’s

prediction and detailed Monte Carlo simulations. The geographic

spreading centrality opens the door to the quantitative under-

standing of spreading dynamics on other networks embedded in

space, in which topology alone is insufficient to fully characterize

the system [33].
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6. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, et al. (2009) Multiscale

mobility networks and the spatial spreading of infectious diseases. Proc Natl
Acad Sci USA 106: 21484–21489.

7. Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, et al. (2011) Human
mobility networks, travel restrictions, and the global spread of 2009 H1N1

pandemic. PloS ONE 6: e16591.

8. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free
networks. Phys Rev Lett 86: 3200–3203.

9. Castellano C, Pastor-Satorras R (2010) Thresholds for epidemic spreading in
networks. Phys Rev Lett 105: 218701.

10. Colizza V, Pastor-Satorras R, Vespignani A (2007) Reaction-diffusion processes
and metapopula- tion models in heterogeneous networks. Nat Phys 3: 276–282.

11. Colizza V, Vespignani A (2007) Invasion threshold in heterogeneous

metapopulation networks. Phys Rev Lett 99: 148701.
12. Nicolaides C, Cueto-Felgueroso L, Juanes R (2010) Anomalous physical

transport in complex net-works. Phys Rev E 82: 055101(R).
13. Meloni S, Arenas A, Moreno Y (2009) Traffic-driven epidemic spreading in

finite-size scale-free networks. Proc Natl Acad Sci USA 106: 16897–16902.

14. Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel.
Nature 439: 462–465.
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