472 research outputs found

    Image compression using modelling of DCT coefficients with mixture laws and adaptive quantization in JPEG environment

    Get PDF
    In this paper, we introduce a new modelling technique for statistical distributions of DCT coefficients and its application to image compression. By modelling the statistics of the AC DCT coefficients we derive an approach for scalar adaptive quantization . A lot of work can be found in the literature concerning these distributions . Depending on authors, they have been modeled as Gaussian, Laplacian or Cauchy laws . The previous results are mainly based on the use of the Kolmogorov-Smirnov fit-test, the decision being taken for the law giving the smallest result to the test . The paper describes the building of statistic tools created in order to define thresholds for the decision . Several fit-tests are computed and finally, the Cramer test appears to be the most selective one . The results we obtain show that statistical distributions of AC DCT coefficients are either Gaussions or mixtures of two to four Gaussians . We can then compute an adaptive quantization matrix and compare images reconstructed with adaptive quantization and with JPEG norm . For identical quality (equivalent PPSNR and histograms), reconstructed images have a higher compression rate when adaptive quantization is used .Dans cet article sont présentés des résultats obtenus sur la recherche des lois de distribution suivies par les coefficients de la Transformée en Cosinus Discrète (TCD) d'images ainsi qu'une première approche de quantification scalaire adaptative. Dans la littérature, de nombreux travaux ont déjà été menés sur l'étude des distributions des coefficients TCD. Les auteurs trouvent des gaussiennes, des laplaciennes ou des lois de Cauchy en basant leur décision sur le test d'adéquation de Kolmogorov-Smirnov et en choisissant la loi qui donne le plus petit résultat au test. Afin de pouvoir justifier de la décision sur la loi, nous avons utilisé une batterie de tests et comparé les résultats à des seuils. Finalement, en utilisant le test de Cramer qui s'est avéré le plus sélectif, nous montrons que les coefficients TCD suivent une loi gaussienne ou somme de deux à quatre gaussiennes. Nous pouvons alors calculer une matrice de quantification adaptative et comparer les images reconstruites après quantification adaptative et après quantification par la norme JPEG. Pour une qualité comparable (PPSNR et histogrammes équivalents), ces images ont un meilleur taux de compression par quantification adaptative

    Transgenerational and within-generation plasticity shape thermal performance curves

    Get PDF
    Thermal performance curves (TPCs) compute the effects of temperature on the performance of ectotherms and are frequently used to predict the effect of environmental conditions and currently, climate change, on organismal vulnerability and sensitivity. Using Drosophila melanogaster as an animal model, we examined how different thermal environments affected the shape of the performance curve and their parameters. We measured the climbing speed as a measure of locomotor performance in adult flies and tested the ontogenetic and transgenerational effects of thermal environment on TPC shape. Parents and offspring were reared at 28 ± 0ºC (28C), 28 ± 4ºC (28V), and 30 ± 0ºC (30C). We found that both, environmental thermal variability (28V) and high temperature (30C) experienced during early ontogeny shaped the fruit fly TPC sensitivity. Flies reared at variable thermal environments shifted the TPC to the right and increased heat tolerance. Flies held at high and constant temperature exhibited lower maximum performance than flies reared at the variable thermal environment. Furthermore, these effects were extended to the next generation. The parental thermal environment had a significative effect on TPC and its parameters. Indeed, flies reared at 28V whose parents were held at a high and constant temperature (30C) had a lower heat tolerance than F1 of flies reared at 28C or 28V. Also, offspring of flies reared at variable thermal environment (28V) reached the maximum performance at a higher temperature than offspring of flies reared at 28C or 30C. Consequently, since TPC parameters are not fixed, we suggest cautiousness when using TPCs to predict the impact of climate change on natural populations.Fil: Cavieres Parada, Grisel Beatriz. Pontificia Universidad Católica de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Alruiz, José M.. Pontificia Universidad Católica de Chile; ChileFil: Medina, Nadia R.. Pontificia Universidad Católica de Chile; ChileFil: Bogdanovich, José M.. Pontificia Universidad Católica de Chile; ChileFil: Bozinovic, Francisco. Pontificia Universidad Católica de Chile; Chil

    AtPME17 is a functional arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to botrytis cinerea

    Get PDF
    Pectin is synthesized in a highly methylesterified form in the Golgi cisternae and partially de-methylesterified in muro by pectin methylesterases (PMEs). Arabidopsis thaliana produces a local and strong induction of PME activity during the infection of the necrotrophic fungus Botrytis cinerea. AtPME17 is a putative A. thaliana PME highly induced in response to B. cinerea. Here, a fine tuning of AtPME17 expression by different defence hormones was identified. Our genetic evidence demonstrates that AtPME17 strongly contributes to the pathogen-induced PME activity and resistance against B. cinerea by triggering jasmonic acid–ethylene-dependent PDF1.2 expression. AtPME17 belongs to group 2 isoforms of PMEs characterized by a PME domain preceded by an N-terminal PRO region. However, the biochemical evidence for AtPME17 as a functional PME is still lacking and the role played by its PRO region is not known. Using the Pichia pastoris expression system, we demonstrate that AtPME17 is a functional PME with activity favoured by an increase in pH. AtPME17 performs a blockwise pattern of pectin de-methylesterification that favours the formation of egg-box structures between homogalacturonans. Recombinant AtPME17 expression in Escherichia coli reveals that the PRO region acts as an intramolecular inhibitor of AtPME17 activity

    Modular assembly of transposable element arrays by microsatellite targeting in the guayule and rice genomes

    Get PDF
    Abstract Background: Guayule (Parthenium argentatum A. Gray) is a rubber-producing desert shrub native to Mexico and the United States. Guayule represents an alternative to Hevea brasiliensis as a source for commercial natural rubber. The efficient application of modern molecular/genetic tools to guayule improvement requires characterization of its genome. Results: The 1.6 Gb guayule genome was sequenced, assembled and annotated. The final 1.5 Gb assembly, while fragmented (N50 =22 kb), maps >95% of the shotgun reads and is essentially complete. Approximately 40,000 transcribed, protein encoding genes were annotated on the assembly. Further characterization of this genome revealed 15 families of small, microsatellite-associated, transposable elements (TEs) with unexpected chromosomal distribution profiles. These SaTar (Satellite Targeted) elements, which are non-autonomous Mu-like elements (MULEs), were frequently observed in multimeric linear arrays of unrelated individual elements within which no individual element is interrupted by another. This uniformly non-nested TE multimer architecture has not been previously described in either eukaryotic or prokaryotic genomes. Five families of similarly distributed non-autonomous MULEs (microsatellite associated, modularly assembled) were characterized in the rice genome. Families of TEs with similar structures and distribution profiles were identified in sorghum and citrus. Conclusion: The sequencing and assembly of the guayule genome provides a foundation for application of current crop improvement technologies to this plant. In addition, characterization of this genome revealed SaTar elements with distribution profiles unique among TEs. Satar targeting appears based on an alternative MULE recombination mechanism with the potential to impact gene evolution. Keywords: Natural rubber, Genome, Assembly, Annotation, Class II transposable element, Non-autonomous, Transposo

    Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap

    Get PDF
    It has been shown recently that while bulk gold is chemically inert, small Au clusters are catalytically active. The reasons for this activity and its dramatic dependence on cluster size are not understood. We use density functional theory to study O2 binding to Au clusters and to a Au(111) surface modified by adsorption of Au clusters on it. We find that O2 does not bind to a flat face of a planar Au cluster, even though it binds well to its edge. Moreover, O2 binds to Au clusters deposited on a Au(111) surface, even though it does not bind to Au(111). This indicates that a band gap is not an essential factor in binding O2, but surface roughness is. Adding electrons to the surface of a Au(111) slab, on which one has deposited a Au cluster, increases the binding energy of O2. However, adding electrons to a flat Ausurface has no effect on O2binding energy. These observations have a simple explanation: in clusters and in the rough surface, the highest occupied molecular orbital (HOMO) is localized and its charge density sticks out in the vacuum. This facilitates charge transfer into the π* orbital of O2, which induces the molecule to bind to gold. A flat face of a cluster or a flat bulk surface tends to delocalize the HOMO, diminishing the ability of the surface to bind O2. The same statements are true for the LUMO orbital, which is occupied by the additional electron given to the system to charge the system negatively

    Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease

    Get PDF
    Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. Objective: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. Methods: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. Results: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). Conclusions: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA

    Benchmarking scientific performance by decomposing leadership of Cuban and Latin American institutions in Public Health

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Scientometrics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11192-015-1831-z”.Comparative benchmarking with bibliometric indicators can be an aid in decision-making with regard to research management. This study aims to characterize scientific performance in a domain (Public Health) by the institutions of a country (Cuba), taking as reference world output and regional output (other Latin American centers) during the period 2003–2012. A new approach is used here to assess to what extent the leadership of a specific institution can change its citation impact. Cuba was found to have a high level of specialization and scientific leadership that does not match the low international visibility of Cuban institutions. This leading output appears mainly in non-collaborative papers, in national journals; publication in English is very scarce and the rate of international collaboration is very low. The Instituto de Medicina Tropical Pedro Kouri stands out, alone, as a national reference. Meanwhile, at the regional level, Latin American institutions deserving mention for their high autonomy in normalized citation would include Universidad de Buenos Aires (ARG), Universidade Federal de Pelotas (BRA), Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas (ARG), Instituto Oswaldo Cruz (BRA) and the Centro de Pesquisas Rene Rachou (BRA). We identify a crucial aspect that can give rise to misinterpretations of data: a high share of leadership cannot be considered positive for institutions when it is mainly associated with a high proportion of non-collaborative papers and a very low level of performance. Because leadership might be questionable in some cases, we propose future studies to ensure a better interpretation of findings.This work was made possible through financing by the scholarship funds for international mobility between Andalusian and IberoAmerican Universities and the SCImago GroupPeer reviewe

    Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus

    Get PDF
    White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.Peer reviewe

    Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Get PDF
    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol\u27s effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b,Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders
    corecore