6,954 research outputs found

    The direct evaluation of attosecond chirp from a streaking measurement

    Full text link
    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure

    Response of a native bamboo [Arundinaria gigantea (Walt.) Muhl.] in a wind-disturbed forest

    Get PDF
    Numerous bamboos are known to form extensive single-species stands, including species in the United States. Formerly prominent in the southeastern US, canebrakes are dense stands of the bamboos collectively called cane [Arundinaria (Michx)]. Canebrakes are now a critically endangered component of the bottomland hardwood forest ecosystem. Cane still occurs in its historic range, primarily in small remnant patches. A poor understanding of the ecological processes that generated large canebrakes limits their restoration and management. We hypothesize that cane\u27s spreading clonal structure enables these bamboos to persist beneath a forest canopy and then respond rapidly to large-scale wind disturbances. We quantified patterns of clonal growth in one cane species, giant cane [Arundinaria gigantea (Walt.) Muhl.], in a very large tornado-generated canopy gap and in surrounding bottomland hardwood forest in Louisiana. We tested these four hypotheses over a 12-month study period in the large canopy gap: (1) production of new culms should be greater, (2) clonal expansion should be greater, (3) culm damage rate should be reduced, and (4) culm size should be reduced compared to giant cane stands under forest canopy. We found that new culm production in tornado-blowdown plots was twice that in forest plots. Accordingly, culms were younger on average in the tornado blowdown than under forest. Rate of clonal expansion was similar between the two environments, suggesting clonal spread was not disturbance-dependent. With fewer branch-fall impacts, culms in the tornado blowdown were less often damaged. Culms were smaller in tornado-blowdown plots than in forest plots. Giant cane\u27s clonal plasticity should enable it to persist in old-growth bottomland forests by responding to local light conditions. Genets should increase culm production in small gaps and senesce as gaps fill in. Giant cane stands could thereby shift location over time. Wind disturbance that opens forest canopy should trigger redevelopment of denser stands that could merge with other expanding stands into expansive canebrakes. Giant cane\u27s clonal ecology may be a useful model for understanding spreading bamboos and other forest-growing clonal perennials. © 2007 Elsevier B.V. All rights reserved

    Leading Order Calculation of Shear Viscosity in Hot Quantum Electrodynamics from Diagrammatic Methods

    Full text link
    We compute the shear viscosity at leading order in hot Quantum Electrodynamics. Starting from the Kubo relation for shear viscosity, we use diagrammatic methods to write down the appropriate integral equations for bosonic and fermionic effective vertices. We also show how Ward identities can be used to put constraints on these integral equations. One of our main results is an equation relating the kernels of the integral equations with functional derivatives of the full self-energy; it is similar to what is obtained with two-particle-irreducible effective action methods. However, since we use Ward identities as our starting point, gauge invariance is preserved. Using these constraints obtained from Ward identities and also power counting arguments, we select the necessary diagrams that must be resummed at leading order. This includes all non-collinear (corresponding to 2 to 2 scatterings) and collinear (corresponding to 1+N to 2+N collinear scatterings) rungs responsible for the Landau-Pomeranchuk-Migdal effect. We also show the equivalence between our integral equations obtained from quantum field theory and the linearized Boltzmann equations of Arnold, Moore and Yaffe obtained using effective kinetic theory.Comment: 45 pages, 22 figures (note that figures 7 and 14 are downgraded in resolution to keep this submission under 1000kb, zoom to see them correctly

    Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Get PDF
    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid

    The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei

    Get PDF
    The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China

    In situ thermal profiles and laboratory impact experiments on iceberg ice

    Get PDF
    AbstractA series of 40 impact tests was conducted an large right-circular cylinders (68.5 cm diameter and 25.7 cm thickness) of iceberg ice collected from an iceberg in Labrador. Temperature profiles were also obtained for the iceberg and the profiles exhibited differences associated with the probe location. Temperatures as low as –15°C were measured at penetration depths of about 8 m. The impact specimens were confined at the perimeter and base by a rigid metallic ring and plate. A spherically terminated impactor, with center-mounted pressure transducer, was dropped on to the flat top surface of specimens from various heights and with various added masses. Impact velocity varied from 1.8 to 3.9 m s−1; impactor mass varied from 155 to 510 kg and the ice-specimen temperature varied from –0.5° to –14.5°C. Peak center pressures averaged from about 25 MPa at the highest temperature to about 41 MPa at the lowest temperature, with the highest recorded pressure being 50 M Pa. Crater volume increased with increasing impact energy, as expected; however, the specific energy of the ejected material was found to decrease as the energy of impact and crater volume increased. A mechanism for this observed behaviour is proposed.</jats:p

    Evaluating elbow osteoarthritis within the prehistoric Tiwanaku state using generalized estimating equations (GEE).

    Get PDF
    OBJECTIVES:Studies of osteoarthritis (OA) in human skeletal remains can come with scalar problems. If OA measurement is noted as present or absent in one joint, like the elbow, results may not identify specific articular pathology data and the sample size may be insufficient to address research questions. If calculated on a per data point basis (i.e., each articular surface within a joint), results may prove too data heavy to comprehensively understand arthritic changes, or one individual with multiple positive scores may skew results and violate the data independence required for statistical tests. The objective of this article is to show that the statistical methodology Generalized Estimating Equations (GEE) can solve scalar issues in bioarchaeological studies. MATERIALS AND METHODS:Using GEE, a population-averaged statistical model, 1,195 adults from the core and one colony of the prehistoric Tiwanaku state (AD 500-1,100) were evaluated bilaterally for OA on the seven articular surfaces of the elbow joint. RESULTS:GEE linked the articular surfaces within each individual specimen, permitting the largest possible unbiased dataset, and showed significant differences between core and colony Tiwanaku peoples in the overall elbow joint, while also pinpointing specific articular surfaces with OA. Data groupings by sex and age at death also demonstrated significant variation. A pattern of elbow rotation noted for core Tiwanaku people may indicate a specific pattern of movement. DISCUSSION:GEE is effective and should be encouraged in bioarchaeological studies as a way to address scalar issues and to retain all pathology information

    Overdispersed Spatial Patterning of Dominant Bunchgrasses in Southeastern Pine Savannas

    Get PDF
    Spatial patterning is a key natural history attribute of sessile organisms that frequently emerges from and dictates potential for interactions among organisms. We tested whether bunchgrasses, the dominant plant functional group in longleaf pine savanna groundcover communities, are nonrandomly patterned by characterizing the spatial dispersion of three bunchgrass species across six sites in Louisiana and Florida. We mapped bunchgrass tussocks of \u3e5.0 cm basal diameter in three [Formula: see text] plots at each site. We modeled tussocks as two-dimensional objects to analyze their spatial relationships while preserving sizes and shapes of individual tussocks. Tussocks were overdispersed (more regularly spaced than random) for all species and sites at the local interaction scale (\u3c0.3 m). This general pattern likely arises from a tussock-centered, distance-dependent mechanism, for example, intertussock competition. Nonrandom spatial patterns of dominant species have implications for community assembly and ecosystem function in tussock-dominated grasslands and savannas, including those characterized by extreme biodiversity

    Overdispersed Spatial Patterning of Dominant Bunchgrasses in Southeastern Pine Savannas

    Get PDF
    Spatial patterning is a key natural history attribute of sessile organisms that frequently emerges from and dictates potential for interactions among organisms. We tested whether bunchgrasses, the dominant plant functional group in longleaf pine savanna groundcover communities, are nonrandomly patterned by characterizing the spatial dispersion of three bunchgrass species across six sites in Louisiana and Florida. We mapped bunchgrass tussocks of \u3e5.0 cm basal diameter in three [Formula: see text] plots at each site. We modeled tussocks as two-dimensional objects to analyze their spatial relationships while preserving sizes and shapes of individual tussocks. Tussocks were overdispersed (more regularly spaced than random) for all species and sites at the local interaction scale (\u3c0.3 m). This general pattern likely arises from a tussock-centered, distance-dependent mechanism, for example, intertussock competition. Nonrandom spatial patterns of dominant species have implications for community assembly and ecosystem function in tussock-dominated grasslands and savannas, including those characterized by extreme biodiversity
    corecore