2,322 research outputs found
Scanning electron microscopy of the outer and inner surface of the buccal cavity of some Mononchida
La cavite buccale de six Mononchides est étudiée en utilisant une technique combinant dissection et extraction afin d'observer les structures internes et externes de cette cavité sans léser les tissus l'entourant. L'extraction des cavités buccales est réalisée grâce à une solution de béta-mercapto-éthanol et de docécyle-sulfate de sodium. Ces produits, dénaturant les protéines, permettent l'élimination des tissus entourant la cavité et, par conséquent, l'observation détaillée de sa surface au microscope électronique à balayage. Cette solution est préférable à une solution d'hypochlorite car une incubation prolongée ne fait pas disparaître les structures fines. L'extraction de la cavité buccale montre que celle-ci comporte quantité de structures fines et quelques structures plus massives, non encore signalées. La cavité buccale peut être divisée en deux zones : une zone antérieure, à parois parallèles, et une zone de base, postérieure, oblique. Cette division est arbitraire mais elle permet la distinction entre i) les plaques buccales verticales (une dorsale, deux ventrales) plus ou moins droites et pouvant porter des dents et ii) le fond de la cavité buccale, formé par trois plaques basales obliques, courbées vers le centre. La présence chez #Anatonchus tridentatus$ de plaques stomatales (une dorsale, deux subventrales), complètement détachées, et de plaques basales complètement détachées des plaques stomatales, distingue cette espèce des autres Mononchides étudiés. Une explication fonctionnelle est discutée. (Résumé d'auteur
Elementary bidiagonal factorizations
AbstractAn elementary bidiagonal (EB) matrix has every main diagonal entry equal to 1, and exactly one off-diagonal nonzero entry that is either on the sub- or super-diagonal. If matrix A can be written as a product of EB matrices and at most one diagonal matrix, then this product is an EB factorization of A. Every matrix is shown to have an EB factorization, and this is related to LU factorization and Neville elimination. The minimum number of EB factors needed for various classes of n-by-n matrices is considered. Some exact values for low dimensions and some bounds for general n are proved; improved bounds are conjectured. Generic factorizations that correspond to different orderings of the EB factors are briefly considered
The role of HLA-DP mismatches and donor specific HLA-DP antibodies in kidney transplantation : a case series
BACKGROUND:
The impact of HLA-DP mismatches on renal allograft outcome is still poorly understood and is suggested to be less than that of the other HLA loci. The common association of HLA-DP donor-specific antibodies (DSA) with other DSA obviates the evaluation of the actual effect of HLA-DP DSA.
METHODS:
From a large multicenter data collection, we retrospectively evaluated the significance of HLA-DP DSA on transplant outcome and the immunogenicity of HLA-DP eplet mismatches with respect to the induction of HLA-DP DSA. Furthermore, we evaluated the association between the MFI of HLA-DP antibodies detected in Luminex assays and the outcome of flowcytometric/complement-dependent cytotoxicity (CDC) crossmatches.
RESULTS:
In patients with isolated pretransplant HLA-DP antibodies (N = 13), 6 experienced antibody-mediated rejection (AMR) and 3 patients lost their graft. In HLAMatchmaker analysis of HLA-DP mismatches (N = 72), HLA-DP DSA developed after cessation of immunosuppression in all cases with 84DEAV (N = 14), in 86% of cases with 85GPM (N = 6/7), in 50% of cases with 56E (N = 6/12) and in 40% of cases with 56A mismatch (N = 2/5). Correlation analysis between isolated HLA-DP DSA MFI and crossmatches (N = 90) showed negative crossmatch results with HLA-DP DSA MFI <2000 (N = 14). Below an MFI of 10,000 CDC crossmatches were also negative (N = 33). Above these MFI values both positive (N = 35) and negative (N = 16) crossmatch results were generated.
CONCLUSIONS:
Isolated HLA-DP DSA are rare, yet constitute a significant risk for AMR. We identified high-risk eplet mismatches that can lead to HLA-DP DSA formation. We therefore recommend HLA-DP typing to perform HLA-DP DSA analysis before transplantation. HLA-DP DSA with high MFI were not always correlated with positive crossmatch results
Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species
The formation pathways of gypsum remain uncertain. Here, using truly in situ and fast time-resolved small-angle X-ray scattering, we quantify the four-stage solution-based nucleation and growth of gypsum (CaSO4 ·2H2O), an important mineral phase on Earth and Mars. The reaction starts through the fast formation of well-defined, primary species of <3 nm in length (stage I), followed in stage II by their arrangement into domains. The variations in volume fractions and electron densities suggest that these fast forming primary species contain Ca-SO4-cores that self-assemble in stage III into large aggregates. Within the aggregates these well-defined primary species start to grow (stage IV), and fully crystalize into gypsum through a structural rearrangement. Our results allow for a quantitative understanding of how natural calcium sulfate deposits may form on Earth and how a terrestrially unstable phase-like bassanite can persist at low-water activities currently dominating the surface of Mars
Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications
Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 · 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals
From regional pulse vaccination to global disease eradication: insights from a mathematical model of Poliomyelitis
Mass-vaccination campaigns are an important strategy in the global fight
against poliomyelitis and measles. The large-scale logistics required for these
mass immunisation campaigns magnifies the need for research into the
effectiveness and optimal deployment of pulse vaccination. In order to better
understand this control strategy, we propose a mathematical model accounting
for the disease dynamics in connected regions, incorporating seasonality,
environmental reservoirs and independent periodic pulse vaccination schedules
in each region. The effective reproduction number, , is defined and proved
to be a global threshold for persistence of the disease. Analytical and
numerical calculations show the importance of synchronising the pulse
vaccinations in connected regions and the timing of the pulses with respect to
the pathogen circulation seasonality. Our results indicate that it may be
crucial for mass-vaccination programs, such as national immunisation days, to
be synchronised across different regions. In addition, simulations show that a
migration imbalance can increase and alter how pulse vaccination should
be optimally distributed among the patches, similar to results found with
constant-rate vaccination. Furthermore, contrary to the case of constant-rate
vaccination, the fraction of environmental transmission affects the value of
when pulse vaccination is present.Comment: Added section 6.1, made other revisions, changed titl
Holistic approach to dissolution kinetics : linking direction-specific microscopic fluxes, local mass transport effects and global macroscopic rates from gypsum etch pit analysis
Dissolution processes at single crystal surfaces often involve the initial formation and expansion of localized, characteristic (faceted) etch-pits at defects, in an otherwise comparatively unreactive surface. Using natural gypsum single crystal as an example, a simple but powerful morphological analysis of these characteristic etch pit features is proposed that allows important questions concerning dissolution kinetics to be addressed. Significantly, quantitative mass transport associated with reactive microscale interfaces in quiescent solution (well known in the field of electrochemistry at ultramicroelectrodes) allows the relative importance of diffusion compared to surface kinetics to be assessed. Furthermore, because such mass transport rates are high, much faster surface kinetics can be determined than with existing dissolution methods. For the case of gypsum, surface processes are found to dominate the kinetics at early stages of the dissolution process (small etch pits) on the cleaved (010) surface. However, the contribution from mass transport becomes more important with time due to the increased area of the reactive zones and associated decrease in mass transport rate. Significantly, spatial heterogeneities in both surface kinetics and mass transport effects are identified, and the morphology of the characteristic etch features reveal direction-dependent dissolution kinetics that can be quantified. Effective dissolution velocities normal to the main basal (010) face are determined, along with velocities for the movement of [001] and [100] oriented steps. Inert electrolyte enhances dissolution velocities in all directions (salting in), but a striking new observation is that the effect is direction-dependent. Studies of common ion effects reveal that Ca2+ has a much greater impact in reducing dissolution rates compared to SO42−. With this approach, the new microscopic observations can be further analysed to obtain macroscopic dissolution rates, which are found to be wholly consistent with previous bulk measurements. The studies are thus important in bridging the gap between microscopic phenomena and macroscopic measurements
Automated analysis of retinal imaging using machine learning techniques for computer vision
There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.
Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet”) age-related macular degeneration (wet AMD) and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye) and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves). Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.
This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.
Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, Google DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success
Dynamics of multi-stage infections on networks
This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider
- …
