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Abstract

An elementary bidiagonal (EB) matrix has every main diagonal entry equal to 1, and

exactly one o�-diagonal nonzero entry that is either on the sub- or super-diagonal. If

matrix A can be written as a product of EB matrices and at most one diagonal matrix,

then this product is an EB factorization of A. Every matrix is shown to have an EB

factorization, and this is related to LU factorization and Neville elimination. The

minimum number of EB factors needed for various classes of n-by-n matrices is con-

sidered. Some exact values for low dimensions and some bounds for general n are

proved; improved bounds are conjectured. Generic factorizations that correspond to

di�erent orderings of the EB factors are brie¯y considered. Ó 1999 Elsevier Science

Inc. All rights reserved.

1. Introduction

Let Eij; 16 i; j6 n, denote the n-by-n 0,1 matrix whose �i; j� entry, and no
other, is 1, and de®ne Li�t� � I � tEi;iÿ1 and Uj�t� � I � tEj;j�1, 26 i6 n;
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16 j6 nÿ 1, for 0 6� t 2 F , a given ®eld. An n-by-n matrix B of the form Li�t� or
Uj�t� is called an elementary bidiagonal (EB) matrix and, more speci®cally, a
lower EB (LEB) matrix in the case of Li�t� and an upper EB (UEB) matrix in the
case of Uj�t�. We say that A 2 Mn�F � has an elementary bidiagonal (EB) fac-
torization if A is a product of EB matrices and at most one diagonal matrix. If all
the EB matrices are lower (upper), then A is lower (upper) triangular and is said
to have a lower (upper) bidiagonal factorization.

Our interest here is in the existence and nature of EB factorizations, which
arise in matrix analysis in various contexts. For example, `Neville' elimination
[8,5] is a variant (working up from the bottom of columns and from the left) of
Gaussian elimination in which only elementary bidiagonal matrices are used.
Previous work on EB factorization has been mainly concerned with the fac-
torization of totally nonnegative matrices that corresponds to Neville elimi-
nation. Totally nonnegative matrices are those matrices with every minor
nonnegative. In the theory of nonsingular totally nonnegative matrices, an
important parameterization is based upon unique EB factorization into totally
nonnegative matrices corresponding to Neville elimination [9,7,6], and such
factorizations have been studied more abstractly in [1,4]. In [5,3], speci®c
bidiagonal factorizations are studied and related to the nonvanishing of certain
minors of the matrix to be factored. All of these prior references deal with
speci®c orders (and numbers) of the bidiagonal factors, which necessarily re-
stricts the class of matrices that can be factored. Initially, we place no re-
striction on the number or order of EB factors.

In Section 2 we show that any matrix has an EB factorization and that
any nonsingular lower (upper) triangular matrix has a lower (upper) bidi-
agonal factorization. This allows us to relate bidiagonal factorization to LU
factorization, as is done in [2] for totally nonnegative matrices. In Section 3
we begin to discuss e�ciency of factorization by categorizing the number of
factors needed for various classes of matrices in low dimensions. Generically
a nonsingular n-by-n lower triangular matrix needs n

2

ÿ �
EB factors, but some

speci®c matrices need more. In Section 4 we begin the process of giving
bounds on the number of factors needed in an arbitrary dimension, and this
leads to a number of important questions. Finally, in Section 5 we comment
upon the possible order of factors in an EB factorization of a generic
matrix.

We conclude Section 1 by discussing an important point of view. EB fac-
torization may naturally (and often conveniently will) be viewed as reduction
to diagonal form via the special elementary operations conveyed by EB ma-
trices. These special elementary operations are elementary row (column) op-
erations on two consecutive rows (columns). But here there is a slight
ambiguity that should be noted. If

A � B1B2 � � �Bk
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is an EB factorization of nonsingular A, in which no diagonal matrix appears,
then we may equally well write

Bÿ1
k � � �Bÿ1

1 A � I ;

Bÿ1
l � � �Bÿ1

1 ABÿ1
k � � �Bÿ1

l�1 � I ;

or

ABÿ1
k � � �Bÿ1

1 � I ;

in which each Bÿ1
i is also an EB matrix. In the ®rst, all the EB matrices are

viewed as special elementary row operations upon A, in the third as elementary
column operations, and in the second as some row and some column opera-
tions. Of course, the order of operations is important in any event. If an EB
matrix B is Li�t�, then Bÿ1 � Li�ÿt�; similarly, Uÿ1

j �t� � Uj�ÿt�. If Li�ÿt�
�Uj�ÿt�� is multiplied on the left of A, then it is the elementary row operation
in which t times row iÿ 1�j� 1� is subtracted from row i�j�; if on the right, it is
the elementary column operation in which t times column i�j� is subtracted
from column iÿ 1�j� 1�. We say that two EB matrices B and B0 are `of the
same type' if B � Li�t� and B0 � Li�s� or if B � Uj�t� and B0 � Uj�s�.

2. Existence of bidiagonal factorizations

We ®rst consider nonsingular A 2 Mn�F � and make some simple observa-
tions if an EB factorization exists.

Lemma 1. Suppose that A 2 Mn�F � is nonsingular and has an EB factorization
�i� A � B1 � � �BlDBl�1 � � �Bk;

for some l; 06 l6 k; in which D is diagonal and each Bi is an EB matrix. Then
for each h; 06 h6 k; A has an EB factorization
�ii� A � B01 � � �B0hDB0h�1 � � �B0k

in which B0i � Bi if B0i lies on the same side of D in (ii) as Bi does in (i), and
otherwise B0i is of the same type as Bi.

Proof. It su�ces to show that D may be moved one position to the left or right,
if it is not already at one end of the factorization. The two cases are similar, so
consider the case h � lÿ 1, assuming k P 1. Then

A � B1 � � �BlDBl�1 � � �Bk � B1 � � �Blÿ1DB0lBl�1 � � �Bk;

where B0l � Dÿ1BlD is an EB matrix of the same type as Bl. In the case of a
move to the right, B0l�1 � DBl�1Dÿ1. �

Since Lemma 1 shows that the diagonal factor in an EB factorization of a
nonsingular matrix may be placed in any relative position, this `rippling' of D
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may be used to consolidate the diagonal factors into just one diagonal matrix
in a product of nonsingular EB factorable matrices.

Lemma 2. If A;C 2 Mn�F � are nonsingular and have EB factorizations, then AC
has an EB factorization. Furthermore, this factorization can be written in terms
of the EB factors of A and C.

Proof. Using Lemma 1, write A � B1 � � �BkD1 and C � D2Bk�1 � � �Bl: Then
AC � B1 � � �Bk�D1D2�Bk�1 � � �Bl; which is an EB factorization. �

It follows that if A 2 Mn�F � is nonsingular and has a factorization into EB
factorable matrices, then A itself is EB factorable. However, this need not lead
to an e�cient factorization of A.

The following example and lemmas lead to a general existence theorem for
EB factorization.

Example 3. The reverse permutation matrix P2 has an EB factorization

P2 � 0 1
1 0

� �
� 1 0

0 ÿ1

� �
1 0
ÿ1 1

� �
1 1
0 1

� �
1 0
ÿ1 1

� �
:

This factorization contains the minimum number, namely 3, of EB factors for
P2.

We call an n-by-n permutation matrix P a consecutive transposition if P �
I � P2 � I ; in which either identity block may be empty. By corresponding
direct summation in each factor, it follows from Example 3 that any
consecutive transposition has an EB factorization with 3 EB factors. Since
any n-by-n permutation matrix is a product of (at most n

2

ÿ �
) consecutive

transpositions, it follows by repeated application of Lemma 2 that the fol-
lowing holds.

Lemma 4. Any permutation matrix has an EB factorization.

We now prove that any matrix associated with a type 3 elementary opera-
tion also has an EB factorization.

Lemma 5. The n-by-n matrix I � tEij; i 6� j; has an EB factorization.

Proof. There is a permutation matrix P such that I � tEij � P TLk�t�P for any
k 2 f2; 3; . . . ng: Since P T and P have EB factorizations by Lemma 4 and Lk�t� is
an EB matrix, it follows from Lemma 2 that I � tEij has an EB factorization.

�
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The existence of a bidiagonal factorization for an arbitrary square matrix
now follows.

Theorem 6. Every A 2 Mn�F � has an EB factorization.

Proof. If A is nonsingular, then it is well known that A may be reduced to a
diagonal matrix D via permutations and type 3 elementary (row and/or col-
umn) operations. Thus, A � E1 � � �EkDF1 � � � Fl in which each Ep; Fq is either a
permutation matrix or a matrix I � tEij; i 6� j: But, since each Ep and Fq has an
EB factorization by Lemmas 4 and 5, and D is diagonal, it follows from
Lemma 2 that A does. If A is singular, then A may be written as

A � S�I � 0�T ;
where S and T are nonsingular. Thus S and T have EB factorizations, which by
Lemma 1 may be assumed to be of the form

S � B1 � � �BpD1 and T � D2Bp�1 � � �Bq;

where each Bi is EB and D1; D2 are (nonsingular) diagonal. Then

A � B1 � � �Bp�D1�I � 0�D2�Bp�1 � � �Bq

is an EB factorization of A. �

Notice that the singular case di�ers from the nonsingular case, in that the
diagonal factor may not in general be put in an arbitrary relative position.

If we extend the notion of EB factorization to nonsquare matrices in the
natural way (with the `diagonal' matrix in the `middle' and of the same order as
A, and with EB matrices on the left (right) square and with the same number of
rows (columns) as A), then the proof above shows that any matrix has an EB
factorization.

The following result on EB factorization of triangular matrices leads to an
equivalence (in Theorem 9) with LU factorization.

Theorem 7. Each nonsingular lower (upper) triangular matrix A 2 Mn�F � has a
lower (upper) bidiagonal factorization.

Proof. By transposition it su�ces to consider the lower triangular case.
Without loss of generality, assume that the diagonal entries are all 1. If A is
diagonal, then the result is trivially true. Otherwise, by induction on n, there is
a lower EB factorization with no diagonal factor. Clearly, this is true for n � 2,
in which case A is an EB matrix. For general n, if the ®rst column of A has no
zero entry, then multiply A on the left by L2�t2� � � � Ln�tn�, with suitably chosen
t2; . . . ; tn; so as to zero out the ®rst column of A (except for the �1; 1� entry) and
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apply the induction hypothesis to the remaining �nÿ 1�-by-�nÿ 1� principal
submatrix in the last nÿ 1 rows. If there are zero entries in the ®rst column of
A, each can ®rst be made nonzero by multiplications of the form Li�ti�; i P 2;
as needed. Then the elimination may be applied. Since reduction of A to the
identity in this manner is equivalent to EB factorization of A (see the Intro-
duction), the proof is complete. �

Example 8. The matrix

0 0
1 0

� �
� 1 0

1 1

� �
1 ÿ1
0 1

� �
1 0
1 1

� �
1 0
0 0

� �
has an EB factorization, but no lower bidiagonal factorization. At least two
diagonal matrices are required to produce the two zero diagonal entries if all
other factors are LEB. Thus the nonsingularity restriction in Theorem 7 cannot
in general be eliminated.

Recall that an n-by-n matrix A has an LU factorization if A can be written as
A � LU , where L is lower triangular and U is upper triangular. Not every
matrix has an LU factorization; for example, P2 in Example 3 does not. But if
an EB factorization of A has all LEB factors occurring to the left of all UEB
factors, then A has an LU factorization. The converse is true for nonsingular
A.

Theorem 9. A nonsingular matrix A 2 Mn�F � has an LU factorization if and only
if A has an EB factorization in which all the elementary lower bidiagonal factors
occur to the left of all the upper bidiagonal factors.

Proof. Su�ciency of the condition has already been mentioned. If A has an LU
factorization, then the product of an LEB factorization of L and a UEB fac-
torization of U (as guaranteed by Theorem 7) gives an EB factorization of A
when the diagonal factors of L and U are rippled together. �

For ®xed A, Lemma 1 shows that an EB factorization is not in general
unique. Furthermore, since, for example, Li�t�Li�s� � Li�t � s�, even the num-
ber of EB matrices in an EB factorization is not unique.

3. EB factorizations in low dimensions

Let l�A� denote the minimum number of EB matrices in a bidiagonal fac-
torization of a nondiagonal matrix A 2 Mn�F �. For example, l�P2� � 3 (see
Example 3); l�A� � nÿ 1 if bidiagonal A � In �

Pn
i�2 ai;iÿ1Ei;iÿ1 withQn

i�2 ai;iÿ1 6� 0, since A �Qn
i�2 Li�ai;iÿ1� is its unique EB factorization; and
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l�A�6 n�nÿ 1� if A is an n-by-n nonsingular totally nonnegative matrix (see,
e.g., [6], p. 110).

For n � 2, explicit factorization gives the following categorization.

Theorem 10. If A � �aij� 2 M2�F �, then

l�A� �
1 if a11a22 6� 0 and exactly one of a12; a21 is 0;
2 if a12a21 6� 0 and a11 or a22 6� 0;
3 if both a11 � a22 � 0:

8<:
For n � 3 consider ®rst the lower triangular matrices.

Theorem 11. If A � �aij� 2 M3�F � is nonsingular and lower triangular, then

l�A� �
1 if a31 � 0 and exactly one of a21; a32 is 0;
2 if a31 � 0 and a21a32 6� 0; or if 0 6� a31a22 � a21a32;
3 if a31 6� 0; a31a22 6� a21a32; and a21 or a32 6� 0;
4 if a31 6� 0 and a21 � a32 � 0:

8>><>>:
Proof. The existence of an LEB factorization is given by Theorem 7. By explicit
factorization, the cases for l�A� � 1; 2 are straightforward. Taking
D � diag�a11; a22; a33�, the cases for l�A� � 3 are covered by the `generic' fac-
torizations:

a11 0 0
a21 a22 0
a31 a32 a33

24 35 � 1 0 0
a21a32ÿa31a22

a11a32
1 0

0 0 1

24 35 1 0 0
0 1 0

0 a32

a22
1

264
375 1 0 0

a31a22

a11a32
1 0

0 0 1

24 35D;

when a32 6� 0, or

a11 0 0
a21 a22 0
a31 a32 a33

24 35 � 1 0 0
0 1 0

0 a31

a21
1

264
375 1 0 0

a21

a11
1 0

0 0 1

24 35 1 0 0
0 1 0

0 a21a32ÿa31a22

a22a21
1

264
375D;

when a21 6� 0, which corresponds to the Neville elimination. The ®nal case
needs four LEB matrices, namely

a11 0 0
0 a22 0

a31 0 a33

24 35� 1 0 0
ÿ1 1 0

0 0 1

24 35 1 0 0
0 1 0
0 a31

a11
1

24 35 1 0 0
1 1 0
0 0 1

24 35 1 0 0
0 1 0
0 ÿa31

a11
1

24 35D:

Viewing this lower bidiagonal factorization as resulting from a reduction of
the matrix to I3, either the �2; 1� or �3; 2� entry must ®rst be made nonzero by
an elementary row or column operation to allow a31 to be eliminated at the
second step. �
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Note that for the A of Theorem 11, the nonvanishing of the minors a31; a21

and a31a22 ÿ a21a32 corresponds to the consecutive column (CC) conditions of
[3].

The 3-by-3 reverse permutation matrix P3 can be factored using eight EB
matrices (and one diagonal matrix); see Theorem 17. Thus l�P3�6 8; and we
conjecture that l�A�6 8 for all A 2 M3�F �.

For n � 4, we begin with a class of matrices that can be factored with at
most n

2

ÿ �
EB matrices.

Theorem 12. If A � �aij� 2 M4�F � is lower triangular with aij 6� 0 for all i P j,
then l�A�6 6:

Proof. Without loss of generality assume all aii are equal to 1. Since all entries
in the ®rst column of A are nonzero, three elementary row operations (corre-
sponding to EB matrices) can be used to zero out entries in the �i; 1� positions
for i � 2; 3; 4. Then by Theorem 11, A can be reduced to I4 with at most three
more elementary operations unless

a32a21 � a31; a43a31 � a41 and a31a42 6� a41a32

(see the ®nal case of Theorem 11). However if all of the three conditions above
hold, then w.l.o.g. A must have the form

A �
1 0 0 0

a21 1 0 0
a31

a31

a21
1 0

a41
a41

a21
� d a41

a31
1

2664
3775;

where d 6� 0. The �4; 1� entry is now eliminated by a column operation, fol-
lowed by row operations to eliminate the �3; 1� and �2; 1� entries, giving

1 0 0 0
0 1 0 0
0 0 1 0
0 a41

a21
� d a41

a31
1

2664
3775:

Three more elementary operations are required to reduce this matrix to I4, as
can be seen from Theorem 11. Thus six LEB matrices su�ce in this case. �

However, as in the case of n � 3, some speci®c 4-by-4 lower triangular
matrices with aij � 0 for some i > j require more than n

2

ÿ �
EB factors. By

consideration of all possible cases, we have the following result.

Theorem 13. If A � �aij� 2 M4�F � is nonsingular and lower triangular, then
l�A�6 6; except in the following cases.
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l�A� �

7 if a41a32 6� 0; a21 � a31 � a42 � a43 � 0;
if a41a43a21 6� 0; a31 � a42 � a32 � 0;
if a42 � 0; 0 6� a41a33 � a43a31; a31a22 � a32a21;
if a31 � 0; 0 6� a41a22 � a42a21; a42a33 � a43a32;

8 if a41 6� 0; a21 � a31 � a32 � a42 � a43 � 0:

8>>>><>>>>:

4. Minimum number of EB factors

We begin this section by considering a particular n-by-n lower triangular
matrix that requires the greatest number of EB factors for dimensions n6 4.
Interestingly, for su�ciently large n, it requires fewer than the generic number
of factors.

Example 14. For n P 3, let A � In � an1En1 with an1 6� 0. Then A has a lower
bidiagonal factorization into 4�nÿ 2� LEB matrices. This number can be seen
most easily by considering the factorization as resulting from reduction of A to
In. The ®rst nÿ 2 steps put nonzeros in the ®rst column of A by consecutive
row operations from the top. The next nÿ 1 steps use row operations from the
bottom to zero out entries �i; 1� for i � n; . . . ; 2: The next nÿ 3 steps use col-
umn operations to zero out entries �n; j� for j � 2; . . . ; nÿ 2. A bidiagonal
matrix results, that takes nÿ 2 more operations to reduce to In. Each operation
corresponds to multiplication by an LEB matrix, thus 4�nÿ 2� LEB matrices
are needed. We conjecture that l�A� � 4�nÿ 2�, and this has been established
for n � 3 and 4 (see Section 3).

For n � 3; 4; 5 and 6, the number 4�nÿ 2� from Example 14 is greater than
n
2

ÿ �
, which is the required number of LEB matrices for factorization of a generic

lower triangular n-by-n matrix. However, for n P 7, 4�nÿ 2� < n
2

ÿ �
, thus the

matrix in Example 14 can be factored with fewer factors than a generic matrix.
The following result for any nonsingular triangular matrix gives a bound on
the number of EB factors.

Theorem 15. If A 2 Mn�F � is an n-by-n nonsingular triangular matrix,
then l�A�6 �nÿ 1�2.

Proof. W.l.o.g. assume that A is lower triangular with all aii � 1. For n � 2 and
3, the claim with equality holding has been established in Theorems 10 and 11.
Assume that the result is true for B 2 Mk�F � with ®xed k. Consider
A 2 Mk�1�F �. If ak�1;1 6� 0; using at most k ÿ 1 elementary row operations
corresponding to EB matrices, each entry in column 1 of A can be made
nonzero. An additional k such operations zero out the ®rst column of A (except
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for the �1; 1� entry). If ak�1;1 � 0; fewer such operations are required. The re-
sulting matrix is of the form �1� � B, which by the inductive hypothesis can be
reduced to Ik�1 with at most �k ÿ 1�2 operations. Thus the total number of
operations for A is at most 2k ÿ 1� �k ÿ 1�2 � k2. Since this is equivalent to
the number of LEB matrices in an EB factorization of A, the result follows by
induction. �

However, we believe that for n P 3 this bound can be improved as in the
following conjecture.

Conjecture 16. If A � �aij� is an n-by-n nonsingular triangular matrix, then
l�A�6 nÿ 2� n

2

ÿ �
. If, in addition, aij 6� 0 for all i > j �i < j� when A is lower

(upper) triangular, then l�A�6 n
2

ÿ �
.

For n � 3 and 4, the ®rst part of Conjecture 16 gives the same tight bounds
as in Theorems 11 and 13. We believe that for n P 4; nÿ 2 elementary row
operations (corresponding to EB matrices) can be applied to A that enable it to
be reduced to In generically (i.e., with at most n

2

ÿ �
additional such operations,

see Section 5). The second part of Conjecture 16 has been established as a tight
bound for n � 3 and 4 (see Theorems 11 and 12). When n P 7, we know of no
nonsingular triangular matrix that requires more than n

2

ÿ �
EB factors.

A bound on the number of EB factors for a class of permutation matrices is
given in the following result.

Theorem 17. The n-by-n reverse permutation matrix Pn can be factored using
n2 ÿ 1 EB matrices (and one diagonal matrix).

Proof. Let Sn � diag�1;ÿ1; 1; � � � ; �ÿ1�nÿ1�. Consider reducing Pn to Sn by el-
ementary operations corresponding to EB matrices. In nÿ 1 row operations
Pn can be reduced to a matrix Q that has 1 in each entry above and on the
reverse diagonal, i.e., qij � 1 for i� j6 n� 1; and 0 otherwise. A further
2�nÿ 1� operations eliminate entries in the ®rst column and row (except for
the �1; 1� entry). Thus Pn is reduced to �1� � �Cnÿ1 ÿ Pnÿ1�; where Cnÿ1 � �cij�
with cij � 1 for i� j � n� 1; and 0 otherwise. We claim that Ck ÿ Pk can be
reduced to ÿSk by 2 k

2

ÿ �
elementary operations corresponding to EB matrices.

For k � 2; this is true from the second case of Theorem 10. To prove the
claim by induction, assume that the result is true for a ®xed k, and consider
Ck�1 ÿ Pk�1. Use k row operations to ®ll up the ®rst column, then a further k
row operations to zero out the ®rst column (except for the �1; 1� entry). The
resulting matrix is �ÿ1� � �Pk ÿ Ck�. Thus Ck�1 ÿ Pk�1 can be reduced to ÿSk

in 2k � 2 k
2

ÿ � � 2 k�1
2

ÿ �
operations, proving the claim. Matrix Pn can thus be

reduced to Sn in
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3�nÿ 1� � 2
nÿ 1

2

� �
� n2 ÿ 1

operations, with each operation corresponding to an EB matrix. �

We conjecture that l�Pn� � n2 ÿ 1.

5. Generic factorizations

By a generic factorization, we mean that any minor of the given matrix that
is required to be nonzero in order for the factorization to proceed is actually
nonzero. In [5] it is assumed that, if necessary, the rows of the matrix have
been permuted so that this is the case. In [3], necessary and su�cient condi-
tions are given for the existence (and uniqueness) of such a generic Neville
factorization.

We assume in this section that A is an n-by-n lower triangular matrix with
every main diagonal entry equal to 1. The generic Neville factorization of A has
the form A �Qn

k�2

Qk
j�n Lj; which gives A � L4L3L2L4L3L4 when n � 4. Each

Lj � Lj�t� for appropriate t 6� 0, and in general, each of the n
2

ÿ �
factors Lj in this

factorization has a di�erent parameter t. In the remainder of this section, the
parameter t will usually be omitted.

Many other generic EB factorizations are possible. For example, if the EB
factorization is viewed as a sequence of elementary column operations that
zero out entries of A from row n to row 2 (and left to right in each row), then
the resultant factorization is A � Qn

k�2

Q2
j�k Lj: Similarly, the factorization A �Q2

k�n

Qn
j�k Lj results from the zeroing out of entries of A `diagonally down-

ward' (i.e., entries �n; 1�; �nÿ 1; 1�; �n; 2�; etc.) using elementary row opera-
tions, whereas the factorization A �Q2

k�n

Qk
j�2 Lj results from the zeroing out

of entries of A `diagonally upward' (i.e., entries �n; 1�; �n; 2�; �nÿ 1; 1�; etc.)
using elementary column operations.

Each of these four factorizations above may be obtained from any of the
others using only the two relations (see [1], p. 57)

LiLj � LjLi if jiÿ jjP 2;

and

LiLi�1Li � Li�1LiLi�1; generically;

the proofs are by induction.
For n � 3, there are only two distinct generic LEB factorizations, namely

A � L2�a21 ÿ a31=a32�L3�a32�L2�a31=a32�;
and
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A � L3�a31=a21�L2�a21�L3�a32 ÿ a31=a21�;
see the proof of Theorem 11. For n � 4, there are 16 generic LEB factorizations
(including the four factorizations listed above), and each may be obtained from
any of the others by using the two relations above. For example, A �
L4L3L2L3L4L3 is one such factorization, which can easily be obtained from the
Neville factorization by using the second relation above.

Necessary and su�cient conditions for the existence of each of the above
four factorizations for matrix A can be given in terms of the nonvanishing of
certain minors of A. The Neville and diagonally downward factorizations re-
quire the CC conditions given in [3], whereas the other two factorizations given
above require conditions similar to the CC conditions but re¯ected in the re-
verse diagonal.
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