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Densely packed surface fractal aggregates form in systems with high local volume fractions of

particles with very short diffusion lengths, which effectively means that particles have little space to

move. However, there are no prior mathematical models, which would describe scattering from such

surface fractal aggregates and which would allow the subdivision between inter- and intraparticle

interferences of such aggregates. Here, we show that by including a form factor function of the

primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces

can be derived from a structure factor term. This formalism allows us to define both a finite specific

surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter

of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio

approach that involves the generation of a “brick-in-a-wall” von Koch type contour fractals. Moreover,

we show that this approach explains observed scattering intensities from in situ experiments that

followed gypsum (CaSO4·2H2O) precipitation from highly supersaturated solutions. Our model of

densely packed “brick-in-a-wall” surface fractal aggregates may well be the key precursor step in

the formation of several types of mosaic- and meso-crystals. C 2016 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4960953]

INTRODUCTION

In colloid sciences fractal scaling concepts constitute

an important formalism that provides for the statistical

description of the properties of particles and their aggregates

(e.g., morphologies, porosity, density, and specific surface

area). The fractal nature of colloids can be experimentally

quantified using scattering techniques, and based on a

combination of theoretical and experimental evidence1–18 two

distinct scaling laws have been used to describe experimental

observations: mass fractals and surface fractals. Mass fractal

scaling can be associated with the packing efficiency of an

aggregate, which in turn depends on the type of aggregation,

e.g., diffusion or reaction limited mechanism.13–21 On the other

hand, surface fractal scaling only relates to the perimeter of

a particle or aggregate of particles and correlates with its

specific surface area.1–5

The core idea behind mass fractals stems from our need to

statistically describe aggregation processes involving primary

particles. To exemplify this, we will assume for simplicity that

a system only has spherical and monodisperse particles with

radii r0. These particles aggregate into larger structures, whose

size is typically characterized by a radius of gyration Rg (see

Fig. 1(a)). For a mass fractal aggregate, the average number

of particles N(r) within a distance of a variable length scale

r , with an arbitrary origin within the aggregate (r < 2Rg), is

a)Authors to whom correspondence should be addressed. Electronic
addresses: rogier@gfz-potsdam.de and stawski@gfz-potsdam.de.

b)R. Besselink and T. M. Stawski contributed equally to this work.

given by10,11

N (r) ∝

(

r

r0

)Dm

, (1)

where Dm is a mass fractal dimension, which in a three-

dimensional space can assume values of 1 ≤ Dm < 3. Regular

objects such as a thin rod, a thin plate, or a cube have

an integer Dm of 1, 2, and 3, respectively. However, for

more complex morphologies, such as branched objects, N(r)

does not necessarily scale with an integer value of Dm,

depending on the aggregate packing density, Dm can have any

fractional value between 1 and 3. For particles aggregating

in solution, one would expect mass fractals, because such

structures usually form at relatively low local particle

concentrations and considerably large diffusion lengths.15–21

This fact is exemplified by the common observation of such

aggregates in nature. Important to note is that the mathematical

formalism used for describing these structures is well

established.8–12

On the other hand, for surface fractal aggregates the

current concepts do not explicitly consider primary particles as

building blocks for the aggregates, since their surface fractal

dimensions cannot be associated with the internal packing

efficiency of primary particles. This is because, surface fractal

scaling deals with an apparently dense object whose surface

area, α, scales with the variable length scale r as follows:3

α(r) = α2

(

r

l2

)2−Ds

, (2)

0021-9606/2016/145(21)/211908/11 145, 211908-1 © Author(s) 2016.
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FIG. 1. (a) Mass fractal aggregate characterized by a radius of gyration Rg and composed of spherical primary particles of radii r0 (grey and green spheres);

(b) Mandelbrot’s22 “How long is the coast of Britain?” example illustrates that the total measured length of the coast (i.e., fractal contour) increases with

decreasing size of the yardstick (pink line). When the yardstick is in relative terms infinitely small (or at least smaller than the smallest d-spacing corresponding

to a measured q-range in scattering, e.g., atomic), the total length of a fractal contour will become effectively infinite; (c) in analogy to (b) the concept of the

surface fractal aggregate is based on the total length of the coastline still being a fractal, but with a yardstick that has a practical finite size. This finite size can

be associated with the size of the primary building blocks (orange and blue squares) making up the entire object. As a consequence, the length of the contour

becomes finite. The blue squares represent the building blocks at the surface. The inset in (c) depicts a rectangular island composed of primary building blocks,

which is an analogue of an aggregate with a smooth surface (Ds= 2). Because of its flat shape, the measured length of the contour line is independent of the

length of the yardstick, provided that the yardstick is considerably shorter than the measured length.

where α2 is the projected area of a rough surface onto a 2D

plane (i.e., area of the “en face photo” of a rough surface), Ds

is the surface fractal dimension, and l2 is the limiting length-

scale, which is related to the size of the discrete building

blocks (e.g., atoms, primary particles, etc.). Such surface

fractal dimensions can assume values between 2 ≤ Ds < 3,

where Ds = 2 represents a perfectly smooth surface, and

values approaching 3 represent a “very rough” surface. The

concept of surface fractals is in line with a classical paper

by Mandelbrot,22 which showed that the apparent length

of Britain’s coastline (i.e., contour line) depends on the

length of the applied yardstick (see Fig. 1(b)). Although

the example used by Mandelbrot dealt with two-dimensional

objects, and thus the yardsticks and the fractal properties were

one-dimensional, in surface fractals we consider the surfaces

of three-dimensional objects. Consequently, the yardsticks and

fractal properties are two-dimensional, and thus a yardstick

can be linked to the surface area α described in Eq. (2).

Although the surface fractal formalism does not exclude the

existence of primary particles (i.e., larger than a single atom)

making up the surface of the aggregate, it is typically assumed

that surface fractal scaling extends to the infinitely small

“atomic” level and hence r → 0 (in analogy to Fig. 1(b)). In

such a case, this type of scaling is attributed to the properties

of surfaces (regardless if these are surfaces of amorphous

particles23 or external crystal surfaces24), excluding smaller

particle morphologies.

There is still an open question, whether we can rationalise

the physicochemical process(es) leading to the formation of

true surface fractal aggregates. Such surface fractals would

have to be internally (nearly) close-packed; however, the

primary building blocks making up such an aggregate still

has to be distinguishable from their surroundings. This

means that they have to be separated by low-density spacers

(e.g., Fig. 1(c)). The presence of such spacers seems to

contradict the close-packing hypothesis; however, close-

packing only requires a high coordination number of nearest

neighbours. Kolb and Herrmann25 showed through Monte

Carlo simulations of highly concentrated colloidal aggregates,

that if the “local” concentration of particles is close to 1

(i.e., the particles have very little space to move), then

surface fractal aggregates are formed instead of their mass

counterparts.25 This is particularly relevant if we consider that

recent studies have pointed out that, for example, nucleation is

driven by local density fluctuations,26,27 and that due to these

fluctuations the local particle concentration can significantly

increase resulting in much decreased diffusion lengths. In

a recent work28 we showed that, during the formation of

gypsum (CaSO4·2H2O), surface fractal aggregates made of

sub-3 nm primary species constituted a crucial step in the

process, without which nucleation nor further growth could

proceed. This insight was gained from experimental in situ

and time-resolved scattering evidence and showed that the

appearance of surface fractal aggregates was indeed preceded

by the formation of domains of increased local number density

of the primary species. We attributed the onset of aggregation

to the “collapse” of these high-density domains and the

sudden increase in the local volume fractions of primary
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species. As a result, surface fractal aggregates formed, yet we

could still distinguish the primary particles making up these

larger morphologies. In addition, this surface fractal aggregate

concept could be particularly relevant within the framework

of non-classical crystallization models, which suggest that

crystals may form as a result of aggregation of primary

particles. As such, this concept could be associated, if not

actually considered as interchangeable, with the notion of

meso-crystals defined for the growth by oriented attachment

of nanoparticles building up single crystals.29 It also appears

that a surface fractal aggregate model could explain various

aspects of the concept of mosaicity that characterises the

formation of inorganic30–32 and macromolecular33–36 single

crystals.

In the aforementioned study on the CaSO4 system, we

used small-angle X-ray scattering data to draft the concept of

surface fractal aggregation. Scattering approaches are among

the most powerful experimental tools for in situ and time-

resolved characterization of nano- and microscopic properties

of colloidal systems, including their possible fractal nature and

aggregation mechanism. Nevertheless, the prime conceptual

missing link between mass fractal and surface fractal systems

has been the total lack of any suitable mathematical model

that describes the measured scattering phenomena for surface

fractal aggregates. To fill this gap, we derived, validated, and

tested an advanced mathematical model in this work, which

allowed us to analyse and fit scattering data, and explained

the concepts of surface fractal aggregates for colloidal

systems.

SCATTERING FROM FRACTAL OBJECTS

Both mass and surface fractals are relatively easy to

observe in the small-angle scattering region of electromagnetic

waves. For mass fractals, the isotropic scattering intensity I

can be expressed as a function of the modulus of the scattering

vector q, for a certain range of length-scales (defined by q) as

follows:

I (q) ∝ q−Dm, (3)

whereas, for surface fractals,

I (q) ∝ q−6+Ds (4)

applies.

To categorize a structure as a true fractal, these

dependencies should extend for at least one decade in q,

and the log I(q) vs. log q representation should yield a

characteristic straight line for both types of fractals (Fig. 2). If

the exponent (i.e., the slope in the logarithmic representation)

is <−1 and >−3, then it corresponds to −Dm, and we deal

with mass fractals (Eq. (3); lines I and II in Fig. 2). On the

other hand, if the exponent is <−3 and >−4, then it is equal

to −6 + Ds, and we should consider surface fractals (Eq. (4);

lines III and IV in Fig. 2). This constitutes in many cases

a straightforward method to establish the occurrence, and

distinguish between the two types, of fractal structures in a

system (Fig. 2).

FIG. 2. log I (q) vs. log q representation of simulated scattering intensities:

(I) exponent −1.5 for ∼0.01 < q < ∼ 2 a.u. indicates a lower density mass

fractal of Dm= 1.5; (II) exponent −2.5 for ∼0.01 < q < ∼ 2 a.u. indicates a

higher density mass fractal of Dm= 2.5; (III) exponent −3.1 for the entire

q-range indicates a rough surface fractal of Ds= 6−3.1= 2.9; (II) exponent

−3.99 for the entire q-range indicates an almost smooth surface fractal of

Ds= 6−3.99= 2.01.

Scattering from mass fractal aggregates
of primary particles

Following the above defined notions, it becomes clear that

in Fig. 2, within the region spanning ∼0.01 < q <∼ 2 a.u.,

the curves I and II originate from mass fractal structures.

However, the power law q−Dm relationship holds neither

for q < ∼0.01 a.u. in the low-q regime where the curves

flatten out approaching q0 nor for q > ∼2 a.u. where the

exponents sharply increase at high-q. The low-q regime marks

the characteristic size of an entire aggregate with a given

Rg (e.g., Fig. 1(a)). Conversely, the high-q regime contains

information about the individual primary particles of radius

r , which make up the aggregate. This regime also contains

information about the size, shape, and/or polydispersity of the

primary particles. The scattering intensity from such a system

with both individual primary particles and aggregates can be

expressed as the product of the three major components10,11

I (q) = vppφ(∆ρ)
2
· P(q) · S(q), (5)

where the first contribution is described by vppφ(∆ρ)
2, which

is the scattering pre-factor, in which vpp denotes the volume of

a primary particle, φ is the total volume fraction of the primary

particles in the matrix, and ∆ρ is the scattering length density

difference between the primary particles and the surrounding

homogenous matrix (e.g., solvent). The other two components

are the functions, P(q) and S(q), which describe the form

and structure of the particles, respectively. P(q) originates

from intraparticle interferences and defines the geometrical

properties of the primary particles building the aggregate (and

thus also defines vpp). The contributions of P(q) in curves I

and II in Fig. 2 are visible at q > ∼2 a.u. On the other hand,

S(q) originates from interparticle interferences and describes

the geometrical arrangement of the primary particles. This

function describes the q < ∼2 a.u. features of the scattering

patterns in curves I and II in Fig. 2.
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For mass fractals the contributions of the various

length-scales are distinguishable in the scattering pattern,

expressed by Eq. (5), and can be easily separated. For an

in-depth description we refer the reader to the literature.12,37,38

Nevertheless, for the sake of a good understanding of the

model for surface fractals we develop below, we will briefly

explain here these concepts.

Firstly, for simplicity, we consider a monodisperse system

with spheres of radius r0. Hence, P(q) is given/known, and

it is by default normalized to its primary particle volume

and consequently P(q → 0) = 1. Furthermore, S(q), once

normalized in such a way that S(q → ∞) = 1, can be expressed

as10,11,39,40

S (q) = 1 −
V2 (q)

v1

= 1 +
1

v1

4π


∞

0

(g (r) − 1) r2 sin qr

qr
dr,

(6)

where V2 represents the perturbed or excluded particle volume,

which represents the length-scale dependent volume that

will not be occupied by primary particles. v1 is the average

available volume per primary particle and equates to V/N1,

where V is the sample’s scattering volume and N1 the total

number of primary particles.40 v1 is therefore the inverse of

the particle number density n1. The mass fractal scaling in

Eq. (6) is represented by g(r). This is a correlation function that

describes the probability of finding two locations separated by

a distance r , which in the case of mass fractals is proportional

to the amount of volume occupied by solid matter, V (r) ∝ rDm.

Using the formalism defined by Chen and Teixeira10,11 the

correlation function for the total number of particles N(r)

within a sphere of radius r is defined by the expression

n1 · (g (r) − 1) =
1

4πr2
·

dN (r)

dr
=

1

4πr2
·

d

dr

(

r

r0

)Dm

=
Dm

4π
·

r (Dm−3)

r
Dm
0

, (7)

where n1 is the overall particle number density within the

sample’s scattering volume V (i.e., V represents the sample

volume that is exposed to incident beam). A finite size of

aggregates can be taken into account in the expression for g(r)

by multiplying Eq. (7) by an exponential cut-off function8–12

exp(−r/ξ), where ξ is the cut-off length. This length marks

the perimeter of the aggregate, and it can be related to Rg from

Eq. (1).10,11 It is worth noting that, by including the exponential

cut-off function (Eq. (7)), n1 represents a local particle number

density within the boundary of the mass-fractal aggregate

rather than an overall particle number density. By substitution

of a normalized correlation function for mass fractals (as

in Eq. (7)) and including a multiplied exponential cut-off

function, exp(−r/ξ), within the normalized definition of the

structure function (Eq. (6)) the following structure function

for mass-fractal aggregates is derived:10,11

SMF (q) = 1 +
DmΓ (Dm − 1)

(qr0)
Dm

·
sin [(Dm − 1)atan(qξ)]
(

1 + (qξ)−2
) (Dm−1)/2

, (8)

where Γ denotes a gamma function.

This mass fractal structure factor, SMF(q), is dimen-

sionless and normalized by its primary particle volume,

and the structure factor goes to unity in the high-q limit

(S(q → ∞) = 1). Hence, this formalism enables the inclusion

of a separate form factor that can describe the shape of

the primary entities. Consequently, this approach provides

information about both the average number of primary

particles per aggregate and the size of the primary entities,

which in turn correlates with the specific surface area and

porosity of the aggregates.

Model development for surface fractal structures

Based on a similar approach as for the mass fractal

structure factor, below we derive a surface fractal structure

factor that will then be linked to, and validated with, our

scattering data. To do this, we start with the advanced

expressions for scattering from surface fractal morphologies

derived by Bale and Schmidt,1 Reich et al.,2 and Wong and

Bray,3,4

I (q) = A ·
Γ (5 − Ds) sin [π (3 − Ds) /2]

3 − Ds

· q−6+Ds, (9)

where A is a constant proportional to the surface area of the

scattering features (e.g., a particle, crystal or pore surface,

etc.) and the scattering contrast.

Contrary to Chen and Teixeira’s derivation(s) for the

mass fractal structure factor (Eq. (8)), the scattering intensity

function for surface fractals in Eq. (9) was not normalized

against the primary particle volume (Eq. (6)), and hence Eq. (9)

does not describe a structure factor function. Consequently, it

cannot be used to describe a multi-level hierarchical structure

composed of primary particles that assemble into larger

aggregates. With Eq. (9), we can simulate various scattering

patterns representing surface fractals (as shown in the

log I(q) vs. log q in Fig. 2, curves III and IV). In this

representation, the simulated scattering patterns turn into

simple straight lines, which essentially lack any characteristic

features at both extremes of the limiting q-range (compared

to curves I and II for mass fractals). Hence, in the current

form Eq. (9) does not describe surface fractal aggregates, but

merely fractal rough surfaces.

To include a form factor, we start with the established

model of fractal surfaces, which relies on a first order

approximation of the correlation function for the scattering

intensity,40,41 that can be expressed as

(

d

dr
g (r)

)

r→0

=
−1

4 (1 − φ)
·
α

Vφ
, (10)

where V is the sample’s scattering volume, α is the surface

area of the solid and as introduced above in Eq. (2), and φ

is the total volume fraction of the primary particles within

the sample’s scattering volume. For fractal rough surfaces,

the surface area α depends on the limiting length-scale, l2,

introduced in Eq. (2). Now, let us assume that a fractal rough

surface is composed of small spherical subunits of radius r0

(see Figs. 3 and 1(c)). In such a case the limiting length-scale

of the surface roughness will be approximately the same size

as that of the primary particles that make up the rough fractal

surface (i.e., l2 ∼ 2r0). Furthermore, when a solid aggregate

is built of Npp number of spherical primary particles, the
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FIG. 3. Schematic representation of the characteristic length-scales consid-

ered for a fractal surface composed of spherical primary particles of radii

r0. l2 is a limiting length-scale and l2= 2r0−a, where a is a small overlap

parameter and a→ 0. α2,pp is a surface area of the projection of a single

spherical primary particle.

total volume of the resulting solid phase within the aggregate

(i.e., Vφ: a product of the sample’s scattering volume V and a

total volume fraction of primary particles φ) can be described

by Eq. (11) and is illustrated in Fig. 3,

φV = Npp ·
4/3πr3

0. (11)

For a typical aggregate, only a limited number of primary

particles Nb,pp are located at the rough boundary surface

(Nb,pp ≪ Npp). Furthermore, as postulated by Wong and Bray,3

primary particles can be partially merged together, and thus

to some extent they may overlap (a la Minkowski sausage3).

For the sake of simplicity we assume that the overlap, a,

is negligibly small compared to the particle radius and thus

l2 = 2r0. In our derivation, α2,pp denotes the surface area of

the projection of a single primary particle (Fig. 1(a), grey and

green spheres), and thus the total projected surface area of the

so formed aggregate can be expressed as

α2 = Nb,ppα2,pp = Nb,pp · π(l2/2)
2
= Nb,pp · πr2

0. (12)

By combining Eqs. (10)-(12) we obtain

(

d

dr
g (r)

)

r→0

=
−1

4 (1 − φ)
·

Nb,pp · πr2
0

Npp ·
4/3πr3

0

·

(

r

2r0

)2−Ds

=
−3φb

16r0

·

(

r

2r0

)2−Ds

. (13)

Here, φb = Nb,pp/Npp is the fraction of primary particles

located at the fractal surface boundary and for dilute systems

(1 − φ) ≈ 1. Integration of Eq. (13) by satisfying the boundary

condition g(r → 0) = 1 results in the following correlation

function g(r), which describes surface fractal aggregates:

g (r) = 1 −
3φb

8 (3 − Ds)
·

(

r

2r0

)3−Ds

. (14)

Importantly, this new correlation function, g(r), also considers

smaller primary entities of size r0. Consequently, we can

substitute this correlation function into the definition of S(q)

in Eq. (6) and derive a new expression for the surface fractal

structure factor SSF(q),

SSF (q) = 1 −


∞

0

9 · 4π · φb · r
5−Ds

32π · (3 − Ds) r3
0
(2r0)

3−Ds
·

sin qr

qr
dr

= 1 +
9φbΓ (5 − Ds)

(2qr0)
6−Ds

·
sin [π (3 − Ds) /2]

3 − Ds

, (15)

where the available primary particle volume v1 (see Eq. (6))

is approximated as the volume of a primary particle with a

radius r0.

In accordance with Wong and Bray,3 this function is

still valid for surface fractal dimensions, Ds up to 3, and

the term sin[π(3 − Ds)/2]/(3 − Ds) converges to π/2. Please

note that, contrary to the mass fractal equation (Eq. (8))

we did not include an upper cut-off value of the aggregate.

This is only useful when all features, including the primary

particle form factor, the intermediate plateau regime, the

surface fractal regime, and the upper cut-off regime fall within

the measured q-range. Since such aggregates are typically

orders of magnitude larger as the primary particles, we

assume that these aggregates extend to macroscopic sizes

and consequently, I(q → 0)→ ∞.

DISCUSSION

The general properties of surface fractal aggregates

Based on the mathematical concepts developed above

we can now simulate the expected scattering profiles for any

system as a function of the three characteristic parameters

of Eq. (15), namely, φb, which is the fraction of primary

particles located at the fractal surface boundary; Ds, the

surface fractal dimension; and r0, the primary particle radius.

We used spherical amorphous silica particles (with a density

of 2.196 g/cm3)46 as an example (Fig. 4). The surface fractal

structure factor from Eq. (15) has to be combined with

a form factor function of primary particles making up an

aggregate (as expressed by Eq. (5)), for which we used a

form factor for monodisperse spheres39,40,42 with radius r0,

Psphere(q) (Eq. (16)). This way the three parameters of the

structure factor function, SSF(q), can be associated with the

specific surface area and the typical length-scale of surface

interfacial sub-surfaces of an aggregate. In real systems, these

parameters are essential, for instance, when considering the

catalytic activity or adsorption efficiency of a catalyst,43–45

Psphere (q) =

(

3
sin qr0 − qr0 cos qr0

(qr0)
3

)2

. (16)

For large q-values, Psphere(q) from Eq. (16) will oscillate

around an average value of 9/2 (qr0)
−4 (Fig. 4(a), dark green

curve I). From a mathematical standpoint such oscillations

are not an issue, yet the fringes would blur the simulated

scattering curves at high-q. For clarity, this spherical form

function is transformed into an approximated spherical form

factor function without figure-obstructing fringes (Papp(q);

Eq. (17)). When plotted in Fig. 4(a) (light green curve II) it

becomes clear that this provides a good approximation for
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FIG. 4. Simulated scattering patterns based on Eqs. (5), (15), and (17). The volume fraction, φ, and the scattering contrast, ∆ρ, were calculated for aqueous

dispersions of amorphous silica particles of density46 2.196 g/cm3 and φ = 0.5%. The scattering length density difference was calculated with respect to water.

(a) log I (q) vs. log q representation (Porod plot) for constant r0= 5 nm and various φb and Ds; (b) Porod plot for various r0, but with constant φb= 0.01 and

Ds= 2.5; (c) log(I (q)·q4) vs. log q plot for surface fractals based on the lines shown in (a), the secondary y-axis represents the modelled specific surface area

which is proportional to the I (q)·q4-axis; (d) log(I (q)·q4) vs. log q plot for surface fractals based on (b) with a specific surface area on the secondary axis.

Psphere(q),

Papp (q) =

(

1

1 + 2/9 (qr0)
4

)

. (17)

This way we can differentiate the three distinct effects that

the φb, DS, and r0 parameters have on the scattering curves

(Fig. 4):

(i) The combination of Eqs. (5), (15), and (17) reveals that

the scattering intensity originating from fractal surfaces

scales linearly with the fraction of particles (φb) located at

this surface (e.g., blue squares in Fig. 1(c)). For instance,

a 100-fold decrease in φb causes a 100-fold decrease

in scattering intensity at low-q, as illustrated by curves

III and IV in Fig. 4(a).

(ii) In analogy to other aforementioned surface fractal

models,1–5 the exponent of the surface fractal regime

(at low-q) in a Porod plot increases from −4 to −3 when

the surface fractal dimensions, Ds, shift from 2 to 3

(Fig. 4(a), curves IV and V).

(iii) The effect the primary particle radius, r0, has on the

simulated intensity patterns is shown in Fig. 4(b). The

intensity value at which the form factors level off (dashed

lines in Fig. 4(b)) scales proportionally with the volume

of the primary particles. Furthermore, an extrapolation

of the primary particle contribution to q → 0 is directly

equal to the scattering pre-factor vppφ(∆ρ)
2 (see Eq. (5)).

The inflection points in Fig. 4(b) (and Fig. 4(a)) divide

the scattering patterns into a low-q part, dependent solely

on the structure factor (SSF(q), Eq. (15)), and a high-q

part, describable exclusively by the primary particle’s

form factor (Papp(q); Eq. (17)).

The above derived surface fractal model can be used

to determine the specific surfaces of the primary particles,

and their aggregates, at different length-scales by using a

log(I(q)·q4) vs. log q representation (Fig. 4(c)). It was shown

by Porod,47 that for a high-q limit, when the scattering

is described by the form factor function of only primary

particles with radius r0, the total smooth surface area of

these particles (i.e., the total sum of the individual surface

areas of all primary particles) is independent of the limiting

length-scale for π/r0 < q < ∞. Therefore, the obtained shapes

of the curves in the high-q part are characterized by a plateau

in a log(I(q)·q4)-log q-plot for q → ∞ (Fig. 4(c), curve I).

The associated specific surface, σ (shown as a secondary

right hand axis in Figs. 4(c) and 4(d)) is determined for this

high-q limit as follows:

σ =
α

Vφ
=

1

2πφ(∆ρ)2
lim

π/r0<q→∞
I (q) · q4. (18)

Converting the intensity axis into a specific surface area axis

(right-hand side y-axis in Figs. 4(c) and 4(d)) reveals that

when smooth aggregates of primary particles are considered

(e.g., particles with a Ds = 2 as shown in Fig. 4(c), curves

II and III), the plots exhibit two plateaus. The aforementioned

high-q plateau originates from the total surface of primary

particles (Eq. (18)), while the 2nd low-q plateau is associated

with the surface of smooth aggregates (low-q regime). In

analogy to the total length of the coastline concept illustrated
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in Fig. 1(c), the case of a surface fractal dimension Ds = 2,

would correspond to a modified figure in which, instead of an

irregularly shaped island, we would have an island with a very

regular shape, such as the rectangle in Fig. 1(c). However,

such a regularly shaped island would itself still be composed

of much smaller bricks. By using such an approach, any

measurement of the length of the coastline contour line (in

analogy to a specific surface) with any yardstick of a length

sufficiently shorter than the dimensions of our rectangular

island, but longer than the dimension of the building-block

brick, would yield the same result. This is analogous to a

plateau in log(I(q)·q4) vs. log q representation (Fig. 4(c),

curves II and III). In the special case of φb = 1 and Ds = 2, the

specific surface area of an aggregate measured this way would

be exactly 4 times smaller than the specific surface area of the

particles that make it up. This is because the approximated

surface area of a circular smooth surface segment α2,pp = π·r0
2

(see Fig. 3 for clarification) is exactly 4 times smaller than the

surface of a sphere αsphere = 4π·r0
2 (see Fig. 4(c), curve II).

This statement holds under the assumption that the average

electron density of the aggregate is close to the electron density

of the individual primary particles. For sake of simplicity

we neglected the contribution of the electron lean regions

between the bricks to the electron density of the whole

aggregate.

On the other hand, for Ds > 2, a low-q plateau is not

visible in our log(I(q)·q4)-log q-plot. Instead, a linear region

with a constant slope is observed for q < π/r0 (Fig. 4(c),

curves III and IV; Fig. 4(d)). If we return for a moment

to Figs. 1(b) and 1(c), we immediately see that the specific

surface (analogous to the length of a contour line) is not

a constant value, because it depends on our measurement

yardstick. Now let us imagine that England is composed of

small bricks (Fig. 1(c)). In such a case, the length of the

coastline increases for decreasing yardstick length, until the

yardstick reaches the size of the primary bricks that form

England. Consequently, the map of England is a fractal object

only down to the size of these primary building blocks.

Likewise, we can assume that the rough surface area α

increases for decreasing yardstick length r , until r reaches

the size of the smallest entities: r = l2 ≈ 2r0 (Eq. (2) and

Fig. 2). Hence, the specific surface area of a rough surface

fractal aggregate, σSF, can be determined by extrapolating

I(q)·q4 to the limiting length-scale (q → 2π/l2) following

Porod’s definition (Eq. (18)) and by changing the limit to

π/r0. Mathematically this can be expressed as

σSF =
1

2πφ(∆ρ)2
lim

q→π/r0

I (q) · q4

=
vpp

2π
lim

q→π/r0

(S (q) − 1) · q4

=
3φbΓ (5 − Ds)

8r0(2π)
2−Ds

·
sin [π (3 − Ds) /2]

3 − Ds

. (19)

Note that here we also assumed that the electron density of

the aggregate is close to the electron density of the individual

particles. However, when the electron density of the aggregate

is substantially lower than that of the individual particles,

due to a substantial contribution of electron lean regions

between the bricks, the intensity of the structure factor will

be reduced. Consequently, the obtained values for φb and σSF

can be overestimated. Extrapolations of the surface fractal

regimes are illustrated by the dashed portions of the lines in

Figures 4(c) and 4(d). Please note that, although the

scattering intensities in the low-q regime decrease, the

actual extrapolation of this regime reveals increasing surface

areas for increasing surface fractal dimensions. For example,

as Ds increases from 2 to 3, while φb and r0 are kept

constant, the specific surface area σSF increases by a factor

π2/2 ≈ 4.9. Moreover, the specific surface area is inversely

proportional to r0 as illustrated in Fig. 4(d). This holds for

both the total specific surface of primary particles given

by σpp = 4πr0
2/(4/3πr0

3) = 3/r0 as well as for fractal rough

aggregate surfaces as defined by Eq. (19).

Empirical validation of the surface fractal
aggregate model

Above, we analytically derived properties of surface

fractal aggregates (Eqs. (5), (16), and (17)) and demonstrated

how this would work on a hypothetical system of spherical

silica particles of a given density (Fig. 4). The profiles in the

log I(q) vs. log q plots (Figs. 4(a) and 4(b)) showed that the

inflection points in the scattering curves, separating the form

factors and the structure factors, were a characteristic feature

of the surface fractal aggregates. These inflection points and

the associated intensity plateaus (I(q) ∝ q0) are related to the

fact that only primary particles at the surface of the aggregates

contribute to the low-q increase in intensity (see also Fig. 1(c)).

We can empirically validate this observation by generating a

Koch-like fractal surface aggregate representation composed

of square-shaped primary particles (Fig. 5) and simulate

ab initio their scattering pattern (see also supplementary

material).

We validated our model by using a quadratic von Koch

curve as described by Mandelbrot.48 In such a case, the

fractal generation involves a systematic surface roughening

that has to be applied at varying length-scales of an initially

square-shaped outline. However, contrary to the classical

von Koch procedure, we simulated aggregates composed

of smaller quadrilaterals of a similar size as the smallest

segment of the outer aggregate contour line. This simple, yet

elegant, approach allowed us to predict the morphology of

an aggregate, which was model-independent because it does

not rely on the mathematical definitions of the correlation

function g(r) described by Eq. (14). The generated aggregate

object is akin to a “brick-in-a-wall” or mosaic structure,

which exhibits a very dense packing of primary particles in

agreement with the findings of Kolb and Herrmann.25 In order

for this to be valid, our hypothetical, computer-generated

object had to be large enough to include all length-scales, in

analogy to primary particles and the fractal rough surfaces

of micron-sized aggregates (i.e., between 1 nm and 10 µm).

Taking into account our limited computational capacities, we

opted for a 2D instead of a 3D simulation approach. We

found that simulating a 2D fractal contained within a matrix

of 256 × 256 primary particles of an average size of 10 × 10

pixel2 (Fig. 5) allowed us to evaluate all characteristic regions
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FIG. 5. Simulated contour Koch-like fractals composed of 2D square-shaped particles (black pixels) and their corresponding intensity patterns, with a contour

fractal dimension of 1.5. (a) Real space 8000 × 8000 pixel2 image of a contour fractal but rotated by 45◦ with 4 contour fractal iteration levels composed of

216 quadrilaterals. The randomised square edge length is 2–20 pixels with the randomised inter-quadrilateral distances of 2–8 pixels (white pixels). In total

218 quadrilateral edges, out of which 214 edges are located at the outer boundary (φL= 6.25%); (b) and (c), respectively, 10× (image 800 × 400 pixel2) and

40× (200 × 100 pixel2) magnification of a contour fractal region in (a); (d) the square of the modulus of the 2D Fourier transform of the image in (a). Intensity

scale increases: blue (lowest)-green-yellow-orange-red (highest); (e)-(h) azimuthally averaged intensity pattern for 4 different types of surface fractals, where

the purple and orange line represent, respectively, the lower and higher boundary of a 99% confidence interval of 10 individually randomized contour fractals at

10 varying clockwise rotation angles in a range between 0◦ and 84˚, with (e) azimuthally averaged intensity pattern of (a) (inlet represents 45◦ rotated contour

fractal); (f) azimuthally averaged intensity pattern from a contour fractal as in (a), however with regular square-shaped bricks of 10 × 10 pixels and 10 pixel

spacers. The input image is 8000 × 8000 pixel2 (blue box) and the magnified images are 200 × 100 pixel2 (red box); (g) azimuthally averaged intensity pattern

from a contour fractal as in (a), but without the “low electron density” spacers, i.e., a dense fractal. The input image is 4000 × 4000 pixel2 (blue box) and the

magnified images are 100 × 50 pixel2 (red box); (h) azimuthally averaged intensity pattern from a contour line fractal as in (a), but the aggregate contained 2

iteration levels, which are repeated 24× along the 4 aggregate edges. This routine results in a contour fractal with a larger number of squares as in (a) (9 ×216),

but with a reduced number of edges at the outer boundary (3×211) leading to a reduced φL= 1.04% as compared to a larger φL= 6.25% of the surface fractal

as shown in (a)-(e) (inlet surface fractal is 12 000 × 12 000 pixels (blue box) and zoom is 200 × 100 pixels (red box). In (e)-(h) the blue dashed lines mark the

characteristic exponents of intensity scaling at different q-regimes. Moreover, green and red arrows indicate ((e)-(g)) the positions of bumps and dips in the

scattering curves, respectively, which correlate with the self-similar build-up of surface fractal roughness pattern.

qualitatively, including the primary particle region, plateau

region, and surface fractal region.

It is worth noting that working in 2D merely changed the

considered definitions because we did not produce a fractal

surface, but a fractal contour (as in Figs. 1(b) and 1(c)).

Furthermore, scattering patterns from such 2D objects are

expected to have exponents between −2 and −3 (rather than

−3 and −4). We simulated four different contour fractals

(Fig. 5) with a theoretical contour fractal dimension of

log4 8 = 1.5, which should result in I(q) ∝ q−2.5. We started by

building a contour fractal composed of 216 quadrilaterals (i.e.,

primary particles, “bricks”) with a randomized area between
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4 and 200 pixels/quadrilateral (schematics in Figs. 5(a)-5(c)).

Each black pixel represents a “high electron density” area. In

order to suppress the potential symmetry contributions to the

scattering patterns (see below), we randomized the positions

of the quadrilaterals’ vertices. Although each quadrilateral

should have four edges, due to the randomization, some angles

were either 0◦ or 180◦, and thus some primary particles became

triangular or line-shaped. The quadrilaterals were separated

by white gaps in a range between 2 and 8 pixels, which

represented the “low electron density” matrix. We assumed

that the electron density of the electron-lean regions between

the bricks equalled the electron density of the “solvent”

surrounding an aggregate.

Then the 2D scattering intensity pattern is the square

of the modulus of the 2D Fourier transform of the 2D

image of an aggregate (Fig. 5(d)). This simulated pattern

was in turn azimuthally averaged to a 1D scattering curve

(Fig. 5(e)). This showed that the curve was qualitatively

very similar to the scattering intensity patterns simulated

with Eqs. (5), (15), and (17) (Figs. 4(a) and 4(c)). The

simulation-derived intensity curve shown in Fig. 5(e) contains

the three characteristic regions previously discussed: (I) low−q

surface fractal region (0.0025 < q < 0.068 pixel−1, with

I(q) ∝ q−2.5), (II) an inflection point and a plateau region

(0.068 < q < 0.30 pixel−1, with I(q) ∝ q0), and (III) a high-q

form factor region (0.45 < q < 3 pixel−1, with I(q) ∝ q−3).

Despite the randomized distances between the neighbouring

quadrilaterals, the intensity curve still contains suppressed

correlation peaks, which correspond to the interparticle

distances along the (1,0) and (1,1) directions with a d-spacing

of 20 and 14.1 pixels, respectively (as shown by the red

stars in Fig. 5(e)). Further randomization would be required

to suppress these correlation peaks even more. Without this

randomization, i.e., for an ordered arrangement of equally

shaped squares, much stronger correlations/diffraction peaks

are produced (Fig. 5(f)). Complete suppression, regardless of

randomization, is practically impossible due to the algorithms

used for the generation of the Koch-type contour fractal (see

supplementary material).

In the simulated intensity patterns in Fig. 5, the length

of the plateau regions depends on the fraction of quadrilateral

edges at the outer boundary with respect to the total number

of quadrilateral edges, φL. The fraction, φL, in these is a

two-dimensional equivalent of the φb parameter that we

introduced for the three-dimensional structure function in

Eq. (16). We calculated the theoretical value of φL as follows:

each quadrilateral was set to have essentially 4 edges, and the

aggregate shown in Fig. 5(e) has thus a total of 218 edges.

Out of these 214 were located at the outer boundary of the

aggregate. This corresponds to a fraction of quadrilateral’s

edges at the boundary, φL = 6.25%. Therefore, the scaling

constant of the structure factor was reduced to 6.25% with

respect to the form factor’s scaling constant, and as a result

we observed an intermediate plateau region (Fig. 5(e)).

Furthermore, the composition of the electron lean region

in between the bricks can be different from the “solvent” that

surrounds the whole aggregate. In such a case the system

is composed of three distinct phases with different electron

densities, namely, the electron density of the bricks (ρb), of the

internal voids (ρiv), and of the surrounding solvent (ρss). For

increasing ρiv with respect to ρss, the inner contrast (ρb − ρiv)

will reduce with respect to the outer contrast (ρb − ρss) (see

Eq. (5)). Consequently, the outer edges contribute more than

the inner edges. Therefore the apparent φL or φb values will

increase for increasing electron density difference between

internal voids and surrounding solvent (ρiv − ρss). Unless the

electron densities of the three phases are known we cannot

unambiguously distinguish between an increase in (ρiv − ρss)

or φ.

Alternatively, when electron dense phases are merged

together and the inner edges of the quadrilateral primary

particles disappeared, we only observed a contrast difference

at the outer contour line (Fig. 5(g)). The length of the

q-range of the plateau region (0.13 < q < 0.25 pixel−1) clearly

decreased in size; however, it was not fully diminished, and

the presence of this plateau region was very consistent over

10 different simulations. Nevertheless, this apparent plateau

belongs to a sequence of bumps and dips (green and red arrows

in Fig. 5(g)), which are separated from each other by a factor

4. A similar sequence of bumps and dips was observed for

the “brick-in-a-wall” contour fractals (green and red arrows

in Figs. 5(e) and 5(f)) and deterministic mass fractals as

reported previously.6,7 The fourfold ratio between the dips

correlates with the fourfold ratio between the self-similar

patterns of surface fractal roughness at different length-scales

or iteration levels. Thus, the apparent plateau in Fig. 5(g)

is an artefact that relates to the self-similar nature of rough

fractal surfaces. Our simulation shows that the plateau region

practically disappears for dense fractals (Fig. 5(g)) and is

only observed when electron dense primary entities remain

separated by electron lean regions, as “bricks-in-a-wall.”

In order to validate the relation between surface fractal

intensity scaling with the number of particles at the outer

boundary, we reduced the relative number of primary

quadrilaterals at the outer surface (Fig. 5(h)). This leads

to 3 × 211 of the quadrilaterals’ edges from a total of 9 × 216

edges to be located at the outer contour line yielding a φL

value of 1.04%. As expected, the intensity of the low-q contour

fractal regime further decreased with respect to the intensity of

the surface fractal shown in Fig. 5(e), and the plateau region

became expanded in the q-range. In overall, our ab initio

approach confirmed that the intensity of the fractal region

scaled proportionally with the number of primary entities at

the aggregate’s surface.

In the final part of this paper we apply the above-

derived surface fractal concepts to real scattering data from

a previous experimental work.28 In our in situ and real-

time scattering data on the nucleation and growth of CaSO4

solids from supersaturated aqueous solution, we observed

very characteristic surface fractal morphologies. These data

sets were the initial inspiration to draft the surface fractal

aggregate concept, which we now expanded and formalized

in this work. In Fig. 6, we show a typical in situ small-angle

X-ray scattering curve obtained from a 75 mmol/l CaSO4

supersaturated solution after 150 s at 21 ◦C. In contrast to

the assumptions made in our derivation, for the case of the

experimental CaSO4 data, the primary particles were found not

to be spherical, but rather cylindrical in shape.28 Thus, to fit the
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FIG. 6. In situ SAXS (Small Angle X-ray Scattering) curve from the solid phase forming in a 75 mmol/l CaSO4 solution at 150 s (21 ◦C). Full experimental

description of the measurement can be found elsewhere.28 Fit parameters for (a)-(d) are based on Eqs. (5), (15), and (20) and using a cylindrical form factor

with the main parameters expressed as vppφ(∆ρ)
2= 0.022 89 cm−1, R = 0.243 nm, L = 3.25 nm, Rpp,g= 0.953 nm, r0= 1.23 nm, Ds= 2.129, φb= 0.100 85.

The horizontal dashed line in all the panels corresponds to the intensity equal to the scattering pre-factor from Eq. (5), vppφ(∆ρ)
2. (a) Best fit of the data based

on Eqs. (5) and (16) (SSF(q)) and Eq. (20) (PGuinier(q)); (b) best fit of the data based on Eqs. (5) and (15), but by using a cylindrical form factor (variables R and

L)42 instead of the Guinier approximation from Eq. (20). Rpp,g in the Guinier approximation is equal to the radius of gyration of a cylinder;39 (c) comparison

between the cylindrical form factor and the Guinier approximation and their extrapolation to q→ 0. Both form factors correspond to the same Rpp,g, and their

profiles are identical for q < ∼2 nm−1; (d) extrapolation of SSF(q) from Eq. (15) to q→∞ with r0 parameter in the structure factor calculated from Rpp,g of the

form factor, under the assumption that the primary particles were spherical (meaning that they could be characterised by a single parameter r0).

scattering curves at high-q, we exchanged the spherical for a

cylindrical form factor,40 which is a function of the particle

length L and the cross-sectional radius R. This approach

provides a more accurate description of the experimental

data at high q-values, which contains information about the

shape of the primary particles. However, deriving SSF(q) from

Eq. (15) revealed that the position of the inflection point

between P(q) and S(q) was dependent both on r0, which is

assumed to be the radius of a primary spherical particle, and

on the fraction, φb, of these primary particles at the surface of

the aggregate. Consequently, r0 has to be known to evaluate

correctly the fraction of the primary particles at the surface.

Clearly, for spherical particles this is not an issue. On the

other hand, for the cylindrical CaSO4 primary particles, r0 can

be approximated by equating the radius of gyration Rpp,g of

a sphere to that of a cylinder. The solid red line in Fig. 6(a)

represents the best fit to the data using Eq. (5). The surface

fractal structure factor, SSF(q), was expressed by Eq. (15), and

for the form factor we used the shape-independent Guinier

approximation (Eq. (20)), where Rpp,g is the radius of gyration

for a primary particle (not the whole aggregate). In Fig. 6(b)

we show a fit which includes a cylindrical form factor,

PGuinier (q) = exp *
,
−

q2Rpp,g2

3
+
-
. (20)

Although such a procedure affects the fit in the high-q part

of the plot (at q > 2 nm−1 see Fig. 6(c)), it does correctly

determine the position of the inflection point, because by

definition S(q → ∞) = 1 and PGuinier(q → 0) = 1. Therefore,

regardless of the form factor contribution, the intensity

corresponding to the inflection point becomes equal to the

scattering pre-factor vppφ(∆ρ)
2 introduced in Eq. (5), and

shown in Fig. 6 by the dotted horizontal lines, which marks

this intensity value. Consequently, the extrapolation of the

structure factor from Eq. (15) to q → ∞ (Fig. 6(d)) and the

form factor from Eq. (20) to q → 0 (Fig. 6(c)) mutually

determines the vppφ(∆ρ)
2 level and the q-coordinate inflection

point. For the computer-generated Koch-like contour fractals,

we demonstrated above (Figs. 5(e) and 5(g)) that the very

occurrence of an inflection point and a plateau in the scattering

region originates from a “low electron density” region

separating the primary particles within an aggregate (compare

Figs. 5(e) and 5(g)). Indeed, based on similar arguments

we had previously concluded that the CaSO4 surface fractal

aggregates in our system were composed of anhydrous-CaSO4

rod-shaped primary species in a water matrix. These are

akin to high electron density “bricks” separated by lower

electron density voids, i.e., a textbook example of a “brick-in-

a-wall” structure. Using the above formulated surface structure

factor fractal model we could thus show (Fig. 6) that indeed

the precursor phase in the CaSO4 system is made of such

“brick-in-a-wall” structures.

CONCLUSIONS

We derived and validated a model for a structure factor

expressed by Eq. (15) which describes the scattering from

“brick-in-a-wall” surface fractal aggregates build of primary

particles. We showed that scattering patterns from such

structures exhibit three characteristic intensity scaling regions:

(I) a low-q part yielding high scattering intensities with the

intensity scaling proportional to q−6+Ds, and which is described

by a structure factor equation; (II) a high-q part representing

only the scattering from the form factor of primary particles

building the aggregate, and (III) the mid-q inflection point

and a plateau (I(q) ∝ q0) separating regions I and II. The very
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existence of such a plateau shows that within the aggregates,

individual primary particles are distinguishable entities (as

shown in Figs. 1(c) and 5(a)-5(c)). Such a distinction is

achieved by introducing gaps in between the primary particles.

These gaps can represent either a local disorder in the

alignment of building blocks caused by the polydisperse

nature of the shape and size of the primary particles or the

presence of solvent rich, possibly diffuse, layers in between

particles that do not contribute to the scattering contrast such

as the crystal water. This arrangement is akin to a typical

“brick-in-a-wall” arrangement, which is consistent with the

concept of a mesocrystal29 frequently observed as the outcome

of non-classical crystal nucleation and growth processes.

SUPPLEMENTARY MATERIAL

See supplementary material for the algorithm we used for

the generation of the Koch-type contour fractal.
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