133 research outputs found
Evidence of a multiple insecticide resistance in the malaria vector Anopheles funestus in South West Nigeria.
BACKGROUND: Knowing the extent and spread of insecticide resistance in malaria vectors is vital to successfully manage insecticide resistance in Africa. This information in the main malaria vector, Anopheles funestus sensu stricto, is completely lacking in the most populous country in Africa, Nigeria. This study reports the insecticide susceptibility status and the molecular basis of resistance of An. funestus as well as its involvement in malaria transmission in Akaka-Remo, a farm settlement village in southwest Nigeria. RESULTS: Plasmodium infection analysis using TaqMan protocol coupled with a nested PCR revealed an infection rate of 8% in An. funestus s.s. from Akaka-Remo. WHO susceptibility tests showed this species has developed multiple resistance to insecticides in the study area. Anopheles funestus s.s. population in Akaka-Remo is highly resistant to organochlorines: dieldrin (8%) and DDT (10%). Resistance was also observed against pyrethroids: permethrin (68%) and deltamethrin (87%), and the carbamate bendiocarb (84%). Mortality rate with DDT slightly increased (from 10 to 30%, n = 45) after PBO pre-exposure indicating that cytochrome P450s play little role in DDT resistance while high mortalities were recorded after PBO pre-exposure with permethrin (from 68 to 100%, n = 70) and dieldrin (from 8 to 100%, n = 48) suggesting the implication of P450s in the observed permethrin and dieldrin resistance. High frequencies of resistant allele, 119F in F0 (77%) and F1 (80% in resistant and 72% in susceptible) populations with an odd ratio of 1.56 (P = 0.1859) show that L119F-GSTe2 mutation is almost fixed in the population. Genotyping of the A296S-RDL mutation in both F0 and F1 samples shows an association with dieldrin resistance with an odd ratio of 81 (P < 0.0001) (allelic frequency (R) = 76% for F0; for F1, 90 and 10% were observed in resistant and susceptible populations, respectively) as this mutation is not yet fixed in the population. CONCLUSION: The study reports multiple insecticide resistance in An. funestus from Akaka Remo. It is, therefore, necessary to pay more attention to this major malaria vector for effective malaria control in Nigeria
Susceptibility profiles of helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) to deltamethrin reveal a contrast between the northern and the southern Benin
Open Access Journal; Published online: 28 May 2019Helicoverpa armigera is an indigenous species in Africa and has been reported in the destruction of several crops in Benin. Management of H. armigera pest is mainly focused on the use of synthetic pyrethroids, which may contribute to resistance selection. This study aimed to screen the susceptibility pattern of field populations of H. armigera to deltamethrin in Benin. Relevant information on the type of pesticides used by farmers were gathered through surveys. Collected samples of Helicoverpa (F0) were reared to F1. F0 were subjected to morphological speciation followed by a confirmation using restriction fragment length polymorphism coupled with a polymerase chain reaction (RFLP-PCR). F1 (larvae) were used for insecticide susceptibility with deltamethrin alone and in the presence of the P450 inhibitor Piperonyl Butoxide (PBO). Deltamethrin and lambda-cyhalothrin were the most used pyrethroids in tomato and cotton farms respectively. All field-sampled Helicoverpa were found to be H. armigera. Susceptibility assays of H. armigera to deltamethrin revealed a high resistance pattern in cowpea (resistance factor (RF) = 2340), cotton (RF varying from 12 to 516) and tomato (RF=85) farms which is a concern for the control of this major polyphagous agricultural pest. There was a significant increase of mortality when deltamethrin insecticide was combined with piperonyl butoxide (PBO), suggesting the possible involvement of detoxification enzymes such as oxidase. This study highlights the presence of P450 induced metabolic resistance in H. armigera populations from diverse cropping systems in Benin. The recorded high levels of deltamethrin resistance in H. armigera is a concern for the control of this major agricultural pest in Benin as the country is currently embarking into economical expansion of cotton, vegetables and grain-legumes cropping systems
Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in West Africa
Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch
(Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management strategies (IPM). Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647,10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively.Functional annotation of the resulting transcripts identified genes putatively involved in insecticide resistance,
pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchneraaphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M.sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa
Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.
BACKGROUND: Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05). Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the potential to serve as a strategy for managing insecticide resistance
Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus
Pyrethroid resistance in Anopheles funestus is threatening malaria control in Africa. Elucidation of underlying resistance mechanisms is crucial to improve the success of future control programs. A positional cloning approach was used to identify genes conferring resistance in the uncharacterised rp2 quantitative trait locus (QTL) previously detected in this vector using F6 advanced intercross lines (AIL). A 113 kb BAC clone spanning rp2 was identified and sequenced revealing a cluster of 15 P450 genes and one salivary protein gene (SG7-2). Contrary to A. gambiae, AfCYP6M1 is triplicated in A. funestus, while AgCYP6Z2 orthologue is absent. Five hundred and sixty-five new single nucleotide polymorphisms (SNPs)were identified for genetic mapping from rp2 P450s and other genes revealing high genetic polymorphisms with one SNP every 36 bp. A significant genotype/phenotype association was detected for rp2 P450s but not for a cluster of cuticular
protein genes previously associated with resistance in A. gambiae. QTL mapping using F6 AIL confirms the rp2 QTL with
an increase logarithm of odds score of 5. Multiplex gene expression profiling of 15 P450s and other genes around rp2
followed by individual validation using qRT–PCR indicated a significant overexpression in the resistant FUMOZ-R strain of the P450s AfCYP6Z1, AfCYP6Z3, AfCYP6M7 and the glutathione-s-transferase GSTe2 with respective fold change of 11.2,6.3, 5.5 and 2.8. Polymorphisms analysis of AfCYP6Z1 and AfCYP6Z3 identified amino acid changes potentially associated with resistance further indicating that these genes are controlling the pyrethroid resistance explained by the rp2 QTL. The characterisation of this rp2 QTL significantly improves our understanding of resistance mechanisms in A. funestus
A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection
Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Cx. quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in E.coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10x expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the
gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory
element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing
allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to Cx.
quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary
Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites
Open Access Journal; Published online: 09 April 2020Termites are widely used as a food resource, particularly in Africa and Asia. Markets for insects as food are also expanding worldwide. To inform the development of insect-based foods, we analysed selected minerals (Fe-Mn-Zn-Cu-Mg) in wild-harvested and commercially available termites. Mineral values were compared to selected commercially available insects. Alate termites, of the genera Macrotermes and Odontotermes, showed remarkably high manganese (Mn) content (292–515 mg/100 gdw), roughly 50–100 times the concentrations detected in other insects. Other mineral elements occur at moderate concentrations in all insects examined. On further examination, the Mn is located primarily in the abdomens of the Macrotermes subhyalinus; with scanning electron microscopy revealing small spherical structures highly enriched for Mn. We identify the fungus comb, of Macrotermes subhyanus, as a potential biological source of the high Mn concentrations. Consuming even small quantities of termite alates could exceed current upper recommended intakes for Mn in both adults and children. Given the widespread use of termites as food, a better understanding the sources, distribution and bio-availability of these high Mn concentrations in termite alates is needed
Capture of high numbers of Simulium vectors can be achieved with Host Decoy Traps to support data acquisition in the onchocerciasis elimination endgame
Onchocerciasis elimination is within reach in many countries but requires enhanced surveillance of the Simulium vectors of Onchocerca volvulus. Collection of sufficient numbers of adult Simulium to detect infective O. volvulus larvae is hindered by limited sampling tools for these flies. Here, we tested for the first time the Host Decoy Trap (HDT), an exposure free method previously developed for Anopheles vectors of malaria parasites, as a potential sampling tool for adult Simulium. In three replicates of a randomized Latin square experimental design, the HDT was compared to Human Landing Catches (HLC) and the Esperanza Window Trap (EWT). A total of 8,531 adult S. damnosum sensu lato blackflies (S. squamosum group) were found in catches from the three different trapping methods. The HDT (mean catch 533 ± 111) caught significantly more S. squamosum than the EWT (mean catch 9.1 ± 2.2), a nearly 60-fold difference. There was no significant difference between the HLC (mean catch 385.6 ± 80.9) and the HDT. Larvae indistinguishable from those of O. volvulus were dissected from 2.86% of HDT samples (n = 70) and 0.35% of HLC samples (n = 285); a single infective third-stage larvae (L3) was found during dissection of a sample from the HDT. Owing to its very high capture rate, which was comparable to the HLC and significantly greater than EWT, alongside the presence of infected flies in its catch, the HDT represents a potentially valuable new tool for blackfly collection in elimination settings, where thousands of flies are needed for parasite screening
The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis
Background
Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes.
Methods and Findings
We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization–recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I2 varied from 95% to 100%).
Conclusions
This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes
Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control
Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the `resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistanceassociated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised
- …
