259 research outputs found
What we observe is biased by what other people tell us: beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues
For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes
Social interactions through the eyes of macaques and humans
Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans
Neocortex expansion is linked to size variations in gene families with chemotaxis, cell–cell signalling and immune response functions in mammals
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell–cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineage
Early predictors of impaired social functioning in male rhesus macaques (Macaca mulatta)
Autism spectrum disorder (ASD) is characterized by social cognition impairments but its basic disease mechanisms remain poorly understood. Progress has been impeded by the absence of animal models that manifest behavioral phenotypes relevant to ASD. Rhesus monkeys are an ideal model organism to address this barrier to progress. Like humans, rhesus monkeys are highly social, possess complex social cognition abilities, and exhibit pronounced individual differences in social functioning. Moreover, we have previously shown that Low-Social (LS) vs. High-Social (HS) adult male monkeys exhibit lower social motivation and poorer social skills. It is not known, however, when these social deficits first emerge. The goals of this study were to test whether juvenile LS and HS monkeys differed as infants in their ability to process social information, and whether infant social abilities predicted later social classification (i.e., LS vs. HS), in order to facilitate earlier identification of monkeys at risk for poor social outcomes. Social classification was determined for N = 25 LS and N = 25 HS male monkeys that were 1–4 years of age. As part of a colony-wide assessment, these monkeys had previously undergone, as infants, tests of face recognition memory and the ability to respond appropriately to conspecific social signals. Monkeys later identified as LS vs. HS showed impairments in recognizing familiar vs. novel faces and in the species-typical adaptive ability to gaze avert to scenes of conspecific aggression. Additionally, multivariate logistic regression using infant social ability measures perfectly predicted later social classification of all N = 50 monkeys. These findings suggest that an early capacity to process important social information may account for differences in rhesus monkeys’ motivation and competence to establish and maintain social relationships later in life. Further development of this model will facilitate identification of novel biological targets for intervention to improve social outcomes in at-risk young monkeys
Intravenous Thrombolysis Is Associated With Better Outcomes in Large‐Vessel Occlusion Requiring Endovascular Therapy
Background: Intravenous thrombolysis (IVT) and endovascular therapy (EVT) are both important treatments for large‐vessel occlusion stroke. However, it is still unclear how the timing of IVT, EVT, and the need for transfer of a patient to an endovascular stroke center for EVT affect outcomes. In this investigation, we study the interaction between IVT, rapidity to EVT, and need for transfer among patients with large‐vessel occlusion stroke. Methods: This investigation is an analysis of the OPUS‐REACH (Optimizing the Use Prehospital Stroke Systems of Care–Reacting to Changing Paradigms) registry of patients with large‐vessel occlusion stroke from 9 endovascular centers in the United States. Using the database, we extracted baseline characteristics of patients, whether the patient received IVT, and time intervals in the patients’ care. Patient demographics and characteristics were compared between 2 groups using the χ2 test for categorical variables and 2‐sample t‐tests or Wilcoxon rank‐sum tests for continuous variables. Multivariable logistic regression was performed to determine the adjusted associations of the variables with 90‐day dichotomized modified Rankin Scale outcome. Results: A total of 1171 patients were included in the final analysis, and 38.9% had good functional outcome at 90 days. Male sex and lower initial National Institutes of Health Stroke Scale score were nonmodifiable factors associated with good clinical outcomes. We saw no differences in outcome whether a patient underwent primary or secondary transport. On multiple variable analysis, the receipt of IVT was the only modifiable factor associated with good outcomes. We found no overall effect of time from last known well to EVT on 90‐day outcomes unless the patient received IVT. Conclusions: In this investigation, receipt of IVT was independently associated with improved outcomes at 90 days with an odds ratio of 1.51. Neither shorter time from last known well to EVT nor direct transport to an endovascular stroke center versus transfer to an endovascular stroke center was associated with improved outcomes. We therefore conclude that prehospital algorithms must account for the timely administration of IVT over time to EVT.Lewis Katz School of MedicineEmergency MedicineNeural SciencesNeurolog
Racial Group Membership Is Associated to Gaze-Mediated Orienting in Italy
Viewing a face with averted gaze results in a spatial shift of attention in the corresponding direction, a phenomenon defined as gaze-mediated orienting. In the present paper, we investigated whether this effect is influenced by social factors. Across three experiments, White and Black participants were presented with faces of White and Black individuals. A modified spatial cueing paradigm was used in which a peripheral target stimulus requiring a discrimination response was preceded by a noninformative gaze cue. Results showed that Black participants shifted attention to the averted gaze of both ingroup and outgroup faces, whereas White participants selectively shifted attention only in response to individuals of their same group. Interestingly, the modulatory effect of social factors was context-dependent and emerged only when group membership was situationally salient to participants. It was hypothesized that differences in the relative social status of the two groups might account for the observed asymmetry between White and Black participants. A final experiment ruled out an alternative explanation based on differences in perceptual familiarity with the face stimuli. Overall, these findings strengthen the idea that gaze-mediated orienting is a socially-connoted phenomenon
Pictorial gaze cues do not enhance long tailed macaques’ performance on a computerised object location task
The perception of pictorial gaze cues was examined in long-tailed macaques (Macaca fascicularis). A computerised object location task was used to explore whether the monkeys would show faster response time to locate a target when its appearance was preceded with congruent as opposed to incongruent gaze cues. Despite existing evidence that macaques preferentially attend to the eyes in facial images and also visually orient with depicted gaze cues, the monkeys did not show faster response times on congruent trials either in response to schematic or photographic stimuli. These findings coincide with those reported for baboons tested with a similar paradigm in which gaze cues preceded a target identification task (Fagot and Deruelle 2002). When tested with either pictorial stimuli or interactants, non human primates readily follow gaze but do not seem to use this mechanism to identify a target object; there seems to be some mismatch in performance between attentional changes and manual responses to gaze cues on ostensibly similar tasks
Long life evolves in large brained bird lineages
The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The “cognitive buffer” hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the “cognitive buffer” hypothesis
Impact of Carnivory on Human Development and Evolution Revealed by a New Unifying Model of Weaning in Mammals
Our large brain, long life span and high fertility are key elements of human evolutionary success and are often thought to have evolved in interplay with tool use, carnivory and hunting. However, the specific impact of carnivory on human evolution, life history and development remains controversial. Here we show in quantitative terms that dietary profile is a key factor influencing time to weaning across a wide taxonomic range of mammals, including humans. In a model encompassing a total of 67 species and genera from 12 mammalian orders, adult brain mass and two dichotomous variables reflecting species differences regarding limb biomechanics and dietary profile, accounted for 75.5%, 10.3% and 3.4% of variance in time to weaning, respectively, together capturing 89.2% of total variance. Crucially, carnivory predicted the time point of early weaning in humans with remarkable precision, yielding a prediction error of less than 5% with a sample of forty-six human natural fertility societies as reference. Hence, carnivory appears to provide both a necessary and sufficient explanation as to why humans wean so much earlier than the great apes. While early weaning is regarded as essentially differentiating the genus Homo from the great apes, its timing seems to be determined by the same limited set of factors in humans as in mammals in general, despite some 90 million years of evolution. Our analysis emphasizes the high degree of similarity of relative time scales in mammalian development and life history across 67 genera from 12 mammalian orders and shows that the impact of carnivory on time to weaning in humans is quantifiable, and critical. Since early weaning yields shorter interbirth intervals and higher rates of reproduction, with profound effects on population dynamics, our findings highlight the emergence of carnivory as a process fundamentally determining human evolution
Whole Brain Size and General Mental Ability: A Review
We review the literature on the relation between whole brain size and general mental ability (GMA) both within and between species. Among humans, in 28 samples using brain imaging techniques, the mean brain size/GMA correlation is 0.40 (N = 1,389; p < 10−10); in 59 samples using external head size measures it is 0.20 (N = 63,405; p < 10−10). In 6 samples using the method of correlated vectors to distill g, the general factor of mental ability, the mean r is 0.63. We also describe the brain size/GMA correlations with age, socioeconomic position, sex, and ancestral population groups, which also provide information about brain–behavior relationships. Finally, we examine brain size and mental ability from an evolutionary and behavior genetic perspective
- …
