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Increased brain size is thought to have played an important role in the evol-

ution of mammals and is a highly variable trait across lineages. Variations in

brain size are closely linked to corresponding variations in the size of the

neocortex, a distinct mammalian evolutionary innovation. The genomic fea-

tures that explain and/or accompany variations in the relative size of the

neocortex remain unknown. By comparing the genomes of 28 mammalian

species, we show that neocortical expansion relative to the rest of the

brain is associated with variations in gene family size (GFS) of gene families

that are significantly enriched in biological functions associated with chemo-

taxis, cell–cell signalling and immune response. Importantly, we find that

previously reported GFS variations associated with increased brain size

are largely accounted for by the stronger link between neocortex expansion

and variations in the size of gene families. Moreover, genes within these

families are more prominently expressed in the human neocortex during

early compared with adult development. These results suggest that changes

in GFS underlie morphological adaptations during brain evolution in

mammalian lineages.

provided by University of Lincoln Institutional R
1. Introduction
Increased brain size in mammals when compared with other vertebrate taxa is

thought to have played an important role in the expansion of this clade.

Increased brain size during evolution has been previously related to increased

behavioural complexity and the ability to cope with a changing environment

[1,2]. However, the precise evolutionary drivers of brain size expansion in

mammals and its relation to behavioural ability are still unclear and remain a

topic of much interest and debate. This is complicated by the fact that different

mammalian clades have differences in the degree of size-related changes in

brain tissue [3]. Generally, large brains differ from small brains in having

larger neuronal soma sizes [4], increased numbers of non-neuronal cells, in par-

ticular glia [5,6], and lower overall neuron density [7]. Large brains, however,

are associated with a high metabolic cost [8–11] as well as higher demands

of parental investment and delayed sexual maturation [12–16].

Brain size is a highly variable trait among mammalian and non-mammalian

species with marked differences observed even between relatively close species

[17–21]. Because brain size is closely associated with variations in body mass

across species [22], comparative studies of brain size frequently use a corrected

measure of brain size, known as encephalization index (Ei), which provides a
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measure of how much brain size is above (or below) what is

expected for a given body size. While Ei is commonly

regarded as an index that aligns more closely with behaviour-

al capacity [1,23,24], many studies have also related

behavioural complexity directly to the actual size of specific

brain regions as well as to relative brain size as a whole

[25–29]. Changes in relative brain size (or Ei) on the other

hand, are not necessarily the result of a proportional expan-

sion of all brain structures. In many mammalian lineages,

most variations in encephalization index are closely linked

to changes in the size of the neocortex [30–32], a distinctive

structure of the mammalian brain and one of the most salient

evolutionary innovations of the mammalian lineage [33–36].

The characteristic increase in the size of the neocortex rela-

tive to the rest of the brain has long been considered one of the

primary targets of selection during mammalian brain evol-

ution [37–39]. Increases in the absolute size of the neocortex

are related to an increase in the number of functionally distinct

neocortical areas [40–42], potentially allowing more complex

information processing and the emergence of new behaviours

[43]. In comparative studies in primates, for instance, relative

size of the neocortex has been correlated with social group

size [12,44,45] (but see [46]), and it has been speculated that

the number of neocortical neurons may be a limiting factor

in determining the number of social relationships mammals

can effectively establish and manage [44]. More neocortical

areas may be found in larger brains due to the lower marginal

cost of devoting additional neural tissue to increasingly

specialized functions [47], and an increasing number of neo-

cortical areas may facilitate a more elaborate processing of

sensory and motor information [48,49].

In the hominid lineage, the expansion of the neocortex is

thought to have played a key role in the evolution of

modern humans [50], including specialized areas involved in

processing and production of language [51,52] as well as

areas involved in identification of faces [53,54] and locations

[55,56]. The neocortex in humans is widely regarded as the

primary seat for the so-called higher cognitive functions,

including self-awareness, consciousness, abstract reasoning

and planning [57–63]. Development of the neocortex extends

well into adolescence in humans and, although the structure

of the layers in the neocortex is established during early pre-

natal development [64], the neocortex keeps growing in

childhood and adolescence, reaching a peak in thickness on

average at around 13 years of age, while myelination of some

cortical regions can still continue after 20 years of age [65].

Despite the importance of the neocortex, the genomic fea-

tures underlying its expansion during mammalian evolution

remain poorly understood [30,66,67]. So far, there have been

few efforts to identify features reflecting the genomic impact

of brain evolution. Dorus and co-workers [68] reported accel-

erated sequence evolution of genes functioning in the

nervous system during human origins, but this pattern was

contested by later studies [69,70]. A genome-wide analysis of

amino acid composition across 37 fully sequenced mammalian

genomes showed that encephalization is significantly corre-

lated with overall protein amino acid composition, although

the causes of this pattern remain unclear [71].

Changes in gene family size (GFS) can reflect changes in the

relative relevance of specific functions in an organism. Gene

duplication events have been proposed to play a major role in

the origin of novel gene functions and expression patterns

[72,73]. Marked differences in GFS have been identified in
Drosophila and vertebrates, with families experiencing the lar-

gest changes being enriched in distinct biological functions

[74–76]. Among mammals, marked differences in the number

of olfactory receptors are likely to reflect variations in the

reliance of different lineages on their sense of smell [77–80].

A recent study found that encephalization in mammalian

lineages is associated with significant variations in GFS, with a

significant enrichment of genes associated with immune

system response, chemotaxis and cell–cell signalling functions

among the most positively associated gene families [81]. Here,

we investigate if variations in the relative size of the neocortex

or neocortex to brain size ratio (Nr) are associated with changes

in GFS in mammalian lineages, and whether the extent to

which any changes in GFS associated with Nr could explain pre-

viously reported associations between GFS variations and

encephalization. We further explored whether any associated

correlations between Nr and GFS are functionally reflected by

the specific patterns of expression of Nr-associated families in

the developing neocortex in humans.
2. Material and methods
2.1. Gene family annotations
Annotated gene families encompassing 28 fully sequenced

mammalian genomes were obtained from Ensembl release 76

[82] (http://www.ensembl.org. Ensembl release 76). In the

context of this annotation, Ensembl families are defined by

clustering all Ensembl proteins along with metazoan sequences

from UniProtKB. Any given gene family constitutes a group of

related genes that includes both paralogues within the same

species and orthologues and paralogues from other species.

Any given gene can only be assigned to a single gene family.

GFS in a given family for a given species was calculated as

the total number of member genes contained in that gene

family, for that particular species. In this study, we included

all gene families with members present in at least six of the

28 mammalian species (n ¼ 11 943). We excluded from this

study any gene family with no variance in GFS across species.
2.2. Phenotype data
Body mass-corrected values of brain mass, known as

encephalization index (Ei), were computed as

Ei ¼ ln
brain mass

body massb

� �
:

The slope (b) was estimated as 0.64 [83] based on a log–log least-

squares linear regression of brain mass against body mass data

from 493 mammalian species (table 1). Neocortex volumes were

compiled from available literature (table 1), and include the grey

and white matter of the cerebral cortex. Grey matter from

palaeocortical structures (entorrhinal cortex, schizocortex,

hippocampus and amygdala) were excluded. Nr was defined as

Nr ¼ neocortex volume

brain volume� neocortex volume
,

after Dunbar [44]. Maximum lifespan (MLSP) for each species

was obtained from the animal ageing and longevity database,

AnAge [100]. Brain region volumes and corresponding sources

as well as encephalization indexes and MLSP for all included

species are shown in table 1.

http://www.ensembl.org
http://www.ensembl.org
http://rsob.royalsocietypublishing.org/


Table 1. Phenotypic traits for the 28 mammalian species analysed.

species name common name
non-neocortex
brain volume (cm3)

neocortex
volume (cm3) ref. Nr Ei MLSP

Ailuropoda melanoleuca giant panda 211.80935 136.43571 [84] 1.81 22.014 36.8

Callithrix jacchus marmoset 7.241 4.371 [85] 1.52 21.627 16.5

Canis familiaris dog ( poodle) 458.273 177.753 [86] 0.63 21.699 24

Cavia porcellus guinea pig 4.671815 1.5798 [87] 0.51 22.948 12

Echinops telfairi lesser hedgehog tenrec 0.566 0.0515 [85] 0.1 23.274 19

Erinaceus europaeus hedgehog 3.05 0.522 [85] 0.21 22.863 11.7

Gorilla gorilla gorilla 470.359 341.444 [85] 2.65 21.415 55.4

Homo sapiens human 1251.847 1006.525 [85] 4.1 0.152 122.5

Loxodonta africana elephant 3886.7 2460.1 [88] 1.72 21.082 65

Macaca mulatta macaque 87.896 63.482 [85] 2.6 21.192 40

Macropus eugenii wallaby 11.6637 4.3987 [89] 0.61 22.207 15.1

Microcebus murinus mouse lemur 1.68 0.74 [85] 0.79 21.985 18.2

Mus musculus mouse (C57BL/6J) 0.48 0.12 [90] 0.32 22.832 4

Mustela putorius furo European polecat 8.8996 4.147 [91] 0.87 22.548 11.1

Ornithorhynchus anatinus platypus 8.57145 4.09928 [92] 0.92 22.219 22.6

Ovis aries sheep 100.332 53.793 [93] 1.16 21.961 22.8

Pan troglodytes chimpanzee 382.103 291.592 [85] 3.22 20.948 59.4

Papio anubis olive baboon 190.957 140.142 [85] 2.76 21.178 37.5

Pongo abelii orangutan 304.2 219.8 [94] 2.6 20.892 59

Procavia capensis hyrax 12.68 5.54 [95] 0.78 22.255 14.8

Pteropus vampyrus megabat 8.89 3.61 [96] 0.68 22.204 20.9

Rattus norvegicus rat 1.69 0.58 [95] 0.52 22.861 5

Sarcophilus harrisii Tasmanian devil 15.1517 3.7334 [89] 0.33 22.792 13

Sorex araneus shrew 0.188 0.0264 [85] 0.16 22.832 3.2

Sus scrofa pig 106.660 54.3913 [97] 1.04 22.468 27

Tarsius syrichta tarsier 3.393 1.768 [85] 1.09 21.795 16

Tursiops truncatus dolphin 1376.976 1088.615 [98] 3.78 20.321 51.6

Vicugna pacos alpaca 181.467 101.81 [99] 1.28 21.688 25.8
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2.3. Correlation coefficients of gene family size and
different phenotypes

Pearson’s correlations between GFS values and the three phe-

notypes, Ei, Nr or MLSP, for all 11 943 gene families included

in the study, were calculated using R-based statistical func-

tions. To determine the statistical significance of any

potential shift in the distribution of Pearson’s correlation

coefficients when compared to random expectation, 10 000

Monte Carlo simulations of the expected distribution based

on random permutations of GFS values across species were

conducted and contrasted with the observed distribution of

correlation coefficients using a Z-score test.

2.4. Confounding variables and phylogenetically
controlled correlations

In order to remove the effect of Ei and MLSP on Nr, we cal-

culated residuals for the multivariate regression of Nr � Ei þ
MLSP (with Nr as the response variable and Ei and MLSP as
independent covariates). For consistency, we used the exact

same approach to obtain similar corrected estimates for all

GFS values after correcting for any potential effects of Ei

and MLSP. This was done by extracting the residuals for

the multivariate regression GFS � Ei þMLSP for each indi-

vidual gene family. The resulting sets of residuals where

then used to obtain phylogenetic independent contrasts

(PIC) to further account for any effect of phylogenetic

relationships on these variables [101]. The resulting indepen-

dent contrasts were finally used to assess the final corrected

association between Nr and GFS by simply using standard

Pearson’s correlations forced through the origin. The same

analysis was carried but using Nr and MLSP instead as inde-

pendent covariates to generate residuals for all Ei and GFS

values, from the multivariate regressions Ei � Nr þMLSP

and GFS � Nr þMLSP respectively, followed by extraction

of the corresponding PIC to assess the unbiased association

between Ei and GFS (figure 1). PIC analysis was computed

using the ape package in R [102]. Ultrametric phylogeny of

the 28 analysed mammalian species was obtained from Time-

Tree database [103] (http://www.timetree.org/. TimeTree2).

http://www.timetree.org/
http://www.timetree.org/
http://rsob.royalsocietypublishing.org/
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Figure 1. Enrichment of gene family size variations (GFS) in line with increased encephalization index (Ei) and neocortex to brain size ratio (Nr) in mammals.
(a) Histogram showing the distribution of correlation coefficients for GFS and Ei in 11 943 gene families encompassing 28 mammalian genomes. (b) Histogram
showing the distribution of correlation coefficients for GFS and Nr in 11 943 gene families encompassing 28 mammalian genomes. In each figure, an estimation of
the expected distribution derived from 10 000 Monte Carlo simulations is represented by the solid line. Inset: distribution of positive and negative correlations
relative to the expected distribution (dashed line).
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2.5. Gene Ontology term enrichment
Gene Ontology (GO) annotations per species for biological pro-

cess domains were obtained from Ensembl’s Biomart release 76

[82]. A GO term was associated with a family whenever that

term was linked to any of its members in any species. To mini-

mize the effect of very small functional categories, only terms

linked to at least 200 gene families were examined (n ¼ 116).

GO terms with less than 200 gene families were assigned to

a ‘small biological process GO terms’ category while gene

families not annotated to any GO term in any species were

grouped into a ‘not annotated’ category. Enrichment analysis

of these GO terms was carried out as described in Castillo-

Morales et al. [81]. Briefly, over-representation of genes

associated with specific GO terms was assessed by counting

the number of gene families assigned to each GO term

within the analysed set of gene families. Statistical significance

was numerically assessed by obtaining the expected number of

families per GO in 1000 equally sized random samples derived

from the overall population of gene families. Because genes

vary in the number of GO terms associated with them, we

adjusted for differences in the density of GO annotations

between the test and background samples, by dividing the

family counts per GO from each sample by the sample’s

average number of GO annotations per family.
2.6. Gene expression before and after full cortical
maturation

RNAseq RPKM normalized expression data summarized to

genes were obtained from the NIMH Transcriptional Atlas

of Human Brain Development database [104] (http://brain-

span.org. BrainSpan Atlas of the Developing Human Brain)

for a total of 143 post-mortem human brain samples corre-

sponding to 11 cortical regions across 13 different ages. The

cortical regions include primary auditory cortex (core)

(A1C), dorsolateral prefrontal cortex (DFC), posteroinferior

(ventral) parietal cortex (IPC), inferolateral temporal cortex

(area TEv, area 20) (ITC), primary motor cortex (area M1,
area 4) (M1C), anterior (rostral) cingulate (medial prefrontal)

cortex (MFC), orbitofrontal cortex (OFC), primary somato-

sensory cortex (area S1, areas 3,1,2) (S1C), posterior

(caudal) superior temporal cortex (area TAc) (STC), primary

visual cortex (striate cortex, area V1/17) (V1C) and ventrolat-

eral prefrontal cortex (VFC). The samples covered

developmental stages 16, 24, 37 post-conception weeks, four

months after birth and 1, 3, 8, 13, 19, 21, 30, 36 and 37

years old. Gene expression data were further normalized

against the total expression per sample, and divided into

two developmental groups, corresponding to the periods

before and after full maturation of cortical thickness, which

occurs at about 13 years of age in humans [65]. For each

gene, expression levels were averaged across stages and

structures of the same developmental window and compari-

sons between developmental windows were carried out by

means of paired Wilcoxon tests.
3. Results
In order to assess the association between gene family size,

GFS, and neocortex expansion, Nr, values were compiled

from the literature for 28 mammalian species with fully

sequenced genomes (table 1). GFS was calculated for a total

of 11 943 non-overlapping families. Pearson’s correlation

coefficients between GFS and Nr were then calculated for

each gene family. We found a significant over-representation

of gene families with positive associations between GFS and

Nr (figure 1) (x2 ¼ 2973.263083, p , 1 � 10220). A Monte

Carlo simulation showed that the observed shift in the distri-

bution towards positive values is statistically significant

when compared with random expectation (Z-score for

observed mean R ¼ 2.225819868, p ¼ 0.013).

In order to assess whether the observed bias towards

strong correlations between GFS and Nr preferentially involves

gene families associated with specific biological functions

(as opposed to random sets of gene families), we assessed

the statistical over-representation of functional annotations

(annotated GO terms per gene family, see Material and

http://brainspan.org
http://brainspan.org
http://brainspan.org
http://rsob.royalsocietypublishing.org/
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methods) for the 440 gene families found to be significantly

associated with Nr (rNr, GFS . 0 and FDR , 0.05). A total of

18 GO functional categories were found to be significantly

enriched (FDR , 0.05) among Nr-associated gene families

including immune response, negative regulation of endopepti-

dase activity, chemotaxis, cell–cell signalling, neuropeptide

signalling pathway and G-coupled receptor signalling

pathway (figure 2). Notably, genes with no functional

annotations showed the highest over-representation.

As Nr is known to be highly correlated to relative brain

size, the observed association between Nr and changes in

GFS could be explained in principle by a previously reported

association between GFS and relative brain size [81]. Indeed,

after calculating correlation coefficients between GFS and Ei

(a commonly used index of brain size relative to body mass)

for each gene family in the same set of 28 species used in

this study (figure 1), we also found a significant shift in the

distribution favouring positive associations. This finding is

consistent with a previously reported study using a larger

set of 39 species [81]. The shift in the distribution of correlation

coefficient values, however, was found to be stronger for Nr

compared with Ei with the significance of the deviation for

the latter being lower, (ZEi¼ 1.70943, p ¼ 0.044, figure 1).

Functional annotation enrichment analysis revealed a total of

17 GO term categories enriched among the set of gene families

found to be significantly associated with Ei (rEi, GFS . 0 and
FDR , 0.05), with a strong overlap with the 18 GO functional

categories found overrepresented among Nr-associated gene

families (Jaccard index ¼ 0.67) (figure 2).

To assess whether variations in GFS associated with Nr

are secondary to the relationships between Ei and GFS, we

obtained Ei-corrected residuals for Nr and GFS. In addition,

due to a known relationship between encephalization and

MLSP in mammals we also corrected for the potential effect

of this trait [83,105]. Finally, in order to remove any phylo-

genetic signal from the correlations between our traits of

interest and GFS arising from interrelatedness among species,

we used the above Nr and GFS residuals to conduct a PIC

analysis (see Material and methods). This phylogenetically

corrected analysis of GFS and Nr residuals revealed a total

of 272 families significantly associated with Nr after cor-

rection for multiple testing (phylogenetically controlled

r’s . 0, FDR , 0.05; electronic supplementary material,

table S1). By contrast, phylogenetically controlled correlations

between equivalent GFS and Ei residuals (correcting for the

effect of Nr and MLSP, see Material and methods) resulted

in no gene families with a significant association after correct-

ing for multiple testing. Nr-associated gene families after this

correction against confounding variables were found to be

enriched in GO terms including immune response, negative

regulation of endopeptidase activity, chemotaxis, cell–cell

signalling and neuropeptide signalling pathway (figure 2).

http://rsob.royalsocietypublishing.org/
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If the association between GFS and Nr responds to the func-

tional demands imposed by the development of a large

neocortex, we should expect genes associated with families dis-

playing a high correlation with Nr to also display a pronounced

level of activity prior to full cortical maturation (when full cor-

tical thickness is reached), compared with later stages. To this

end, we used available gene expression data derived from

human neocortex obtained from the BrainSpan Atlas of the

Developing Human Brain [104] (see Material and methods).

We found that gene members of this set of families showed

higher expression levels during human development prior to

the neocortex reaching maximum thickness (which in humans

occurs around the age of 13 years) compared with later

stages, reflecting a transcriptional signature of the potential

involvement of some of these genes in the development of the

neocortex ( p ¼ 0.00013).
0132
4. Discussion
The expansion of the neocortex observed in several mamma-

lian lineages is considered to be linked to a proliferation of

new cortical areas driving increased cognitive capabilities

[40,106]. The genomic drivers shaping the evolution of the

brain and its morphology remain, however, poorly under-

stood. By comparing the genomes of 28 mammalian

species, here we have assessed the potential association

between changes in GFS and the expansion of the neocortex.

We show that neocortical expansion is indeed strongly and

specifically associated with variations in GFS in mammals.

Furthermore, variations in relative neocortical size account

for a high proportion of the previously reported links

between GFS and changes in encephalization across mamma-

lian species [81]. This suggests that changes in GFS in line

with relative brain size in mammals are actually secondary

to the underlying correlation between neocortex size and

encephalization. Analysis of available human neocortex

gene expression data revealed that genes in families strongly

and specifically associated with neocortex size variations also

show significantly higher levels of expression at stages of

development before (but not after) maximal cortical develop-

ment is reached in humans, thereby supporting a functional

role for these gene families in the ontological development

of a large neocortex. Among the 272 gene families whose

size was found robustly correlated with relative neocortex

size, even after correcting for encephalization, MLSP and

phylogenetic relationships, 16 distinct biological functions

(GO terms) were found to be significantly overepresented.

Among these, cell–cell signalling and chemotaxis are

known to play critical roles in the development and mainten-

ance of the nervous system. Example of Nr-associated

gene families annotated to these functions are the tyrosine

kinase precursor family (ENSFM00730001521921), encoding

receptor protein-tyrosine kinases and widely known to pro-

mote cell survival, proliferation, adhesion and migration in

the central nervous system [107–109]. The leukotriene B4

receptor 2 family (ENSFM00680001303697) includes leuko-

triene B4, a proinflammatory signalling molecule which has

been shown to mediate regulation of neural stem cell

proliferation and differentiation [110].

Several immune-related biological functions (inflamma-

tory response, defence response to bacteria, immune

response, defence response and positive regulation of I-kB
kinase/NF-kB signalling) were also enriched among Nr-

associated gene families. Along these lines in recent years,

numerous immune-related signalling and regulatory com-

ponents have also been shown to play key physiological

roles in the developing and adult nervous system (for a

review see [111]). This involvement of individual immune-

related signalling components in neural functions has been

shown to be part of a wider genetic network of immune-

related molecules acting as an intrinsic component of the

neural-specific regulatory machinery that ultimately shapes

the normal development of the nervous system [112]. Thus,

for instance, members of the tumour necrosis factor (TNF)

receptor superfamily (ENSFM00500000273041, a gene

family found to be highly associated with neocortex expan-

sion here), are themselves part of the extensively studied

canonical pathway of activation of the transcription factor

NF-kB during early development of the nervous system [111].

Interestingly, gene families with no reported functio-

nal annotations for any of its members in any species

showed the highest enrichment among the gene families

with the highest positive associations with relative neocortex

size. Among these families, we found the neuroblastoma

breakpoint gene family (ENSFM00250000000879), whose

members contain DUF1220 domains. DUF1220 domains

have been previously linked to brain and cortical expansion

in primate species, particularly in the human lineage

[113,114]. Polymorphic deletions and duplications of

DUF1220 domains have been associated with brain size

variations in normal individuals from different human popu-

lations as well in pathological cases including microcephaly

and macrocephaly [115,116]. Moreover, it has been proposed

that proteins containing this domain have an important role

during cortical neurogenesis, as they promote proliferation

in neural stem cells [113], and during normal development

they are expressed in the sub-ventricular zone precisely

during the period of cortical neurogenesis [114].

Of particular importance to build a larger neocortex is the

control of successive rounds of proliferation during early devel-

opment, where the interplay between symmetric and

asymmetric cell division is thought to be critical in shaping the

particular morphology of the neocortex [117]. Consistent with

this, one gene family with significant GFS changes in line with

increased relative neocortex size is the ENSFM00250000003440

gene family of epithelial cell adhesion molecules, which in

turn include known human developmental regulators such as

EPCAM and TACSTD2. EPCAM has been shown to be involved

in cell proliferation, differentiation and migration in diverse cell

types [118,119] and could thus play an important role in neo-

cortex development. A more numerous gene family found was

the speedy gene family (ENSFM00740001589497), which

encodes proteins able to bind CDKs but having no similarity

with cyclins, and some of its members are known to play a

role in the regulation of cell cycle [120,121]. While a great vari-

ation in gene numbers across species has been documented in

this family [122], here we report the first evidence of a strong

association between these variations in this family and relative

neocortex size in mammals.
5. Conclusion
In summary, we have identified a set of gene families whose

sizes are positively associated with an expanded neocortex,
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providing new insights into neocortex evolution. Moreover,

as aberrant development and degeneration of cortical neur-

ons has been linked with a variety of mental health

pathologies and dementias [123,124], identifying genomic

signatures associated with the evolution of larger brain size

and neocortex expansion will critically contribute to our

understanding of the molecular pathways involved in the

development and maintenance of cortical areas in highly

encephalized mammals including humans. As these path-

ways may not be present or developed to the same extent

in less encephalized mammalian species, our finding could

help to fill existing gaps in current knowledge gained from

widely used rodent models.
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