109 research outputs found

    High Spin-Wave Propagation Length Consistent with Low Damping in a Metallic Ferromagnet

    Full text link
    We report ultra-low intrinsic magnetic damping in Co25_{\text{25}}Fe75_{\text{75}} heterostructures, reaching the low 10410^{-4} regime at room temperature. By using a broadband ferromagnetic resonance technique, we extracted the dynamic magnetic properties of several Co25_{\text{25}}Fe75_{\text{75}}-based heterostructures with varying ferromagnetic layer thickness. By estimating the eddy current contribution to damping, measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26\,nm thick sample to be \alpha_{\mathrm{0}} \lesssim 3.18\times10^{-4}.Furthermore,usingBrillouinlightscatteringmicroscopywemeasuredspinwavepropagationlengthsofupto. Furthermore, using Brillouin light scattering microscopy we measured spin-wave propagation lengths of up to (21\pm1)\,\mathrm{\mu m}ina26nmthickCo in a 26 nm thick Co_{\text{25}}FeFe_{\text{75}}$ heterostructure at room temperature, which is in excellent agreement with the measured damping.Comment: Updated Versio

    Observation of the spin Nernst effect

    Full text link
    The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect, and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, that so far has only been discussed on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent Yttrium Iron Garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations

    Local charge and spin currents in magnetothermal landscapes

    Full text link
    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging

    Towards Oxide Electronics:a Roadmap

    Get PDF
    At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore's law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics

    Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory gd T cell subsets

    Get PDF
    Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment

    Optimizing the growth conditions of Al mirrors for superconducting nanowire single-photon detectors

    Full text link
    We investigate the growth conditions for thin (less than 200 nm) sputtered aluminum (Al) films. These coatings are needed for various applications, e.g. for advanced manufacturing processes in the aerospace industry or for nanostructures for quantum devices. Obtaining high-quality films, with low roughness, requires precise optimization of the deposition process. To this end, we tune various sputtering parameters such as the deposition rate, temperature, and power, which enables 50 nm thin films with a root mean square (RMS) roughness of less than 1 nm and high reflectivity. Finally, we confirm the high quality of the deposited films by realizing superconducting single-photon detectors integrated into multi-layer heterostructures consisting of an aluminum mirror and a silicon dioxide dielectric spacer. We achieve an improvement in detection efficiency at 780 nm from 40 % to 70 % by this integration approach.Comment: 11 pages, 6 figure

    All Oxide Ferromagnet/Semiconductor Epitaxial Heterostructures

    Full text link
    Oxide based ferromagnet/semiconductor heterostructures offer substantial advantages for spin electronics. We have grown (111) oriented Fe3O4 thin films and Fe3O4/ZnO heterostructures on ZnO(0001) and Al2O3(0001) substrates by pulsed laser deposition. High quality crystalline films with mosaic spread as small as 0.03 degree, sharp interfaces, and rms surface roughness of 0.3 nm were achieved. Magnetization measurements show clear ferromagnetic behavior of the magnetite layers with a saturation magnetization of 3.2 muB/f.u. at 300 K. Our results demonstrate that the Fe3O4/ZnO system is an intriguing and promising candidate for the realization of multi-functional heterostructures.Comment: 4 pages, 3 figure
    corecore