10 research outputs found

    Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins

    Get PDF
    Thioglycosides offer the advantage over O-glycosides to be resistant to hydrolysis. Based on initial evidence of this recognition ability for glycosyldisulfides by screening dynamic combinatorial libraries, we have now systematically studied dithiodigalactoside on a plant toxin (Viscum album agglutinin) and five human lectins (adhesion/growth-regulatory galectins with medical relevance e.g. in tumor progression and spread). Inhibition assays with surface-presented neoglycoprotein and in solution monitored by saturation transfer difference NMR spectroscopy, flanked by epitope mapping, as well as isothermal titration calorimetry revealed binding properties to VAA (Ka: 1560 ± 20 M-1). They were reflected by the structural model and the affinity on the level of toxin-exposed cells. In comparison, galectins were considerably less reactive, with intrafamily grading down to very minor reactivity for tandem-repeat-type galectins, as quantitated by radioassays for both domains of galectin-4. Model building indicated contact formation to be restricted to only one galactose moiety, in contrast to thiodigalactoside. The tested lycosyldisulfide exhibits selectivity between the plant toxin and the tested human lectins, and also between these proteins. Therefore, glycosyldisulfides have potential as chemical platform for inhibitor design

    Pentavalent Sialic Acid Conjugates Block Coxsackievirus A24 Variant and Human Adenovirus Type 37–Viruses That Cause Highly Contagious Eye Infections

    Get PDF
    Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens

    Synthesis of 4-O-Alkylated N-Acetylneuraminic Acid Derivatives

    No full text
    N-acetyl neuraminic acid (Neu5Ac) is a densely functionalized nine-carbon monosaccharide. It ubiquitously decorates the surface of mammalian cells were it is found in terminal positions of glycolipids and glycoproteins. This important saccharide and natural analogs play important roles in a number of processes in health and disease. Despite this few Neu5Ac based therapeutics have been developed. To further study and understand the chemistry and biology of Neu5Ac efficient protocols for synthesis of the parent natural compounds as well as synthetic analogs are required. In the manuscript, we report investigation of alkylation reactions to produce selectively modified Neu5Ac with focus on position 4. The study provides insights in the reaction and we establish robust protocols that allow selective modification of Neu5Ac for use as tool compounds and starting points for drug discovery.</p

    Sialic Acid-Containing Glycans as Cellular Receptors for Ocular Human Adenoviruses: Implications for Tropism and Treatment

    No full text
    Human adenoviruses (HAdV) are the most common cause of ocular infections. Species B human adenovirus type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause epidemic keratoconjunctivitis (EKC). Recently, HAdV-D53, -D54, and -D56 emerged as new EKC-causing agents. HAdV-E4 is associated with both PCF and EKC. We have previously demonstrated that HAdV-D37 uses sialic acid (SA)-containing glycans as cellular receptors on human corneal epithelial (HCE) cells, and the virus interaction with SA is mediated by the knob domain of the viral fiber protein. Here, by means of cell-based assays and using neuraminidase (a SA-cleaving enzyme), we investigated whether ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells. We found that HAdV-E4 and -D56 infect HCE cells independent of SAs, whereas HAdV-D53 and -D64 use SAs as cellular receptors. HAdV-D8 and -D54 fiber knobs also bound to cell-surface SAs. Surprisingly, HCE cells were found resistant to HAdV-B3 infection. We also demonstrated that the SA-based molecule i.e., ME0462, designed to bind to SA-binding sites on the HAdV-D37 fiber knob, efficiently prevents binding and infection of several EKC-causing HAdVs. Surface plasmon resonance analysis confirmed a direct interaction between ME0462 and fiber knobs. Altogether, we demonstrate that SA-containing glycans serve as receptors for multiple EKC-causing HAdVs, and, that SA-based compound function as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs

    DS_DISC768062 – Supplemental material for Screening for Inhibitors of Acetaldehyde Dehydrogenase (AdhE) from Enterohemorrhagic <i>Escherichia coli</i> (EHEC)

    No full text
    <p>Supplemental material, DS_DISC768062 for Screening for Inhibitors of Acetaldehyde Dehydrogenase (AdhE) from Enterohemorrhagic <i>Escherichia coli</i> (EHEC) by Caroline E. Zetterström, Pia Uusitalo, Weixing Qian, Shannon Hinch, Rémi Caraballo, Christin Grundström, and Mikael Elofsson in SLAS Discovery</p

    Pentavalent Sialic Acid Conjugates Block Coxsackievirus A24 Variant and Human Adenovirus Type 37 – Viruses That Cause Highly Contagious Eye Infections

    No full text
    Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection, and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens

    14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface

    No full text
    The cellular toxicity of Pseudomonas exotoxin-S and -T depends on their activation by 14-3-3 but the underlying molecular mechanism is not fully understood. Here, the authors show that a previously unrecognized 14-3-3:exotoxin binding interface is sufficient for complex formation and toxin activation
    corecore